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Incentive

The Interlock system makes up ~ 20% of the total beam time loss

If beam interruptions (interlocks) can be predicted, we can prevent them

Interlock happens
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Formulating the problem

Classification approach: what gets classified?
"windows” of a multivariate timeseries
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Evaluation metrics

Receiver operating characteristic (ROC) plots

True positive rate (TPR) against the false positive rate (FPR) of the model
predictions as a function of the discrimination threshold

Perfect classifier

True Positive Rate -

False Positive Rate



Evaluation metrics

How many false positives can we tolerate?
Target <0
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Target = max(TPR — 10 x FPR) TPR

FPR



Evaluation metrics

How many false positives can we tolerate?
Target <0

3

I
TPR &y 4 Target>0

Target = max(TPR — 10 * FPR)

FPR

Beam time lost w.r.t the non-intervention baseline of 25 seconds

per interlock:

(1— TPR) %25 + TPR %6 + FPR x 45 % 6



RPCNN Preprocessing

Highly imbalanced classes:

e take 5 samples per interlock event

e bootstrapping of the interlock class
Different types of interlocks with varying sample numbers:
e only consider interlock events related to losses

Standardize the signals to mean 0 and standard deviation 1

Window length of 12 s



RPCNN

Input
Recurrence Plots of the data windows

Channels

«  »
timestamps I]] I E =

Time series classification — Image classification




Recurrence Plots

What is a recurrence plot(RP)?

Tool to analyze dynamical systems and detect hidden dynamical patterns and
nonlinearities




RPCNN

Global Recurrence Plots
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Architecture
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Architecture

Dense layer

Recurrence plot

Inception module

|
Pooling
|
Dense layer

Dense layer

Output
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Conclusion

e Performance highly depends on the initialization

e Best models would save 1.5 s/interlock
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Conclusion

e Performance highly depends on the initialization

e Best models would save 1.5 s/interlock

There are still many knobs left to turn
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