A Novel Approach for Classification and Forecasting of Time Series in Particle Accelerators

Sichen Li, Mélissa Zacharias October 8, 2020

Incentive

The Interlock system makes up \sim 20% of the total beam time loss If beam interruptions (interlocks) can be predicted, we can prevent them

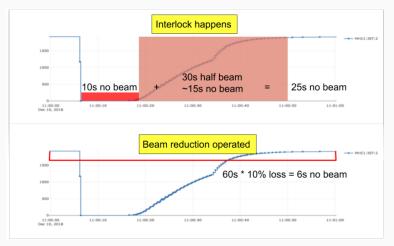
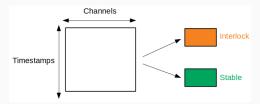
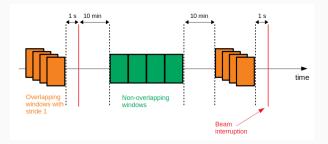
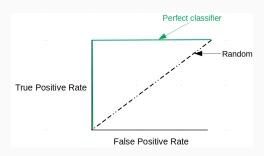



Figure by Sichen Li


Formulating the problem

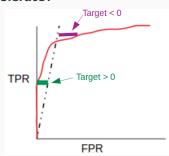
Classification approach: what gets classified?

"windows" of a multivariate timeseries


what are stable and interlock windows?

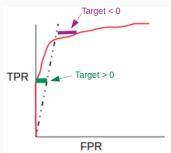
Evaluation metrics

Receiver operating characteristic (ROC) plots


True positive rate (TPR) against the false positive rate (FPR) of the model predictions as a function of the discrimination threshold

Evaluation metrics

How many false positives can we tolerate?


$$\mathsf{Target} = \mathsf{max}(\mathit{TPR} - 10 * \mathit{FPR})$$

Evaluation metrics

How many false positives can we tolerate?

$$\mathsf{Target} = \mathsf{max}(\mathit{TPR} - 10 * \mathit{FPR})$$

Beam time lost w.r.t the non-intervention baseline of 25 seconds per interlock:

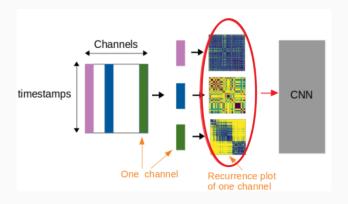
$$(1 - TPR) * 25 + TPR * 6 + FPR * 45 * 6$$

Highly imbalanced classes:

- take 5 samples per interlock event
- bootstrapping of the interlock class

Different types of interlocks with varying sample numbers:

only consider interlock events related to losses

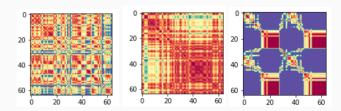

Standardize the signals to mean 0 and standard deviation 1

Window length of 12 s

RPCNN

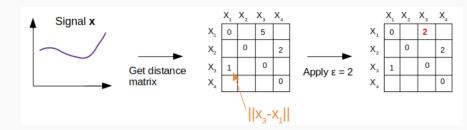
Input

Recurrence Plots of the data windows

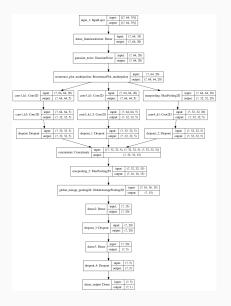

 $\textbf{Time series classification} \rightarrow \textbf{Image classification}$

6

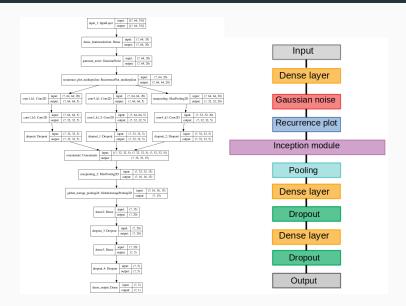
Recurrence Plots


What is a recurrence plot(RP)?

Tool to analyze dynamical systems and detect hidden dynamical patterns and nonlinearities $% \left(1\right) =\left(1\right) \left(1\right$



Global Recurrence Plots


$$D_{i,j} = \begin{cases} ||x_i - x_j||, & ||x_i - x_j|| \le \epsilon \\ \epsilon, & ||x_i - x_j|| > \epsilon \end{cases}$$

RPCNN Architecture

RPCNN Architecture

RPCNN Results

Conclusion

- Performance highly depends on the initialization
- Best models would save 1.5 s/interlock

Conclusion

- Performance highly depends on the initialization
- Best models would save 1.5 s/interlock

There are still many knobs left to turn

Thank you to

Dr. A. Adelmann (ETH)
Dr. Jochem Snuverink (PSI)
Jaime Coello (PSI)
Dr. Perez Cruz Fernando (SDSC)