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Different ways of testing 

0. Diagnostic use: patients, medical staff 
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22.000.000

700.000

(USA)

(CH)
Ntest =

NHousehold

6 !!daily, i.e.

How to carry out such large numbers of tests?

Goal: Identify and quarantine infected households within 
a serial time   → 

Test every household once per 6 days!

R < 1 ; k < 0
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More precise analysis / proposal:

Feasibility of COVID-19 Screening 
for the U.S. Population with 
Group Testing

P. Frazier et al, April 2020 (Cornell)



Testing large numbers:  Pool testing

+
+

Reduction of required tests by a factor 3i2/30
i0 :  Prevalence (infected fraction of population)

i0 = 0.001
NPCR

Ntest
= 0.03

Daily PCR:

660.000

20.000

(USA)

(CH)

BUT:

Pooling COVID19 virus is hard: 

So far only pooling of small numbers 
of tests has worked.



Different ways of testing 

k(t)1. Suppressing 

2. Monitoring

• Contact tracing (BUT: asymptomatic spread is dangerous!)
• Massive screening of entire population 

k(t)
• Measure k(t) via random sampling
• Assess policies with minimal delay
• Feedback and control loop to reach optimal steady state: 

k = 0 ; R = 1

Always use both approaches:  (2) monitors the success of (1) !



Feedback and control loop -- like a thermometer!



No representative sampling = almost blind flight

Or driving from the back seat with only rear view



Post-diction of infections from death numbers 

N. Ferguson et al, 
Imperial College
Covid19 Report 
No.13

Many groups in 
Switzerland use 
similar modelling

https://mrc-ide.github.io/covid19estimates/#/
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Post-diction of infections from death numbers 

T. Stadler, ETH
Monitoring COVID-19
Spread in Switzerland

• Model-
dependent 
results!

• ~ 14 day 
delay

Undetected doubling in 3 days results in 10-30 times increase of prevalence! 

N. Ferguson et al, Imperial College
Covid19 Report No.13
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Measuring the reproduction number: Status quo
Webpage of the Swiss Nat. Task Force

≥ "# days delay 
in postdiction!

1.Depends on 
model / fit
2. Large 
uncertainty 
due to small 
numbers



Variability of models and confidence intervals

Commentary_Insel_project_Nagler_200404.docx  3 
 

We did not understand the intended meaning of this question. Based on our interpretation, we 
analysed the proportion of individuals with a positive test that ended up in hospital (Appendix B) . 
When fewer than 2,000 tests were performed per day, an effect of preferential ascertainment of 
severe cases can be seen. When more than 2,000 tests a day are performed, this effect was less 
pronounced. To date, data suggests that with higher testing positivity can be  interpreted as 
proportional to incidence. 
 
Unresolved issues 
 
Statistical and model-based analyses supporting our responses are dependent on the timely availability 
of data. For the most part, the contributing groups have based their conclusions on FOPH data up to 
16th April (as provided on the 17th April). Additional data [1] allowed further interpretation of recent 
trends until 19th April or to resolve reporting delays in the FOPH database compared to cantonal data.  
 
Despite inherent and possibly unavoidable delays in reporting at a federal level, daily real-time release 
of data from FOPH would be immensely valuable and would allow regular updates of these analyses, 
including estimates of Re and assessment of indicators for the relaxing and tightening of control 
measures. For example, it seems that the data on the BAG dashboard was more up to date over the 
weekend than the data that we obtained. Additional detail on the number of negative tests (by canton, 
age, sex) would further improve our understanding of the influence of testing on the observed trends.  
 
References 
[1] https://github.com/openZH/covid_19 
 
 
Appendices 
 
Appendix A - overview of modelling results in Switzerland 

 
 
 
 

Confidence intervals of different models do not overlap!

Report of the Swiss Nat. Task Force



Can we do better?

• Avoid 14 days delay

• Remove modelling uncertainty
?



Delay in death numbers (Geneva)

3 weeks!

! (#$ − #&)!

Lockdown Peak in deaths



Benefit of shortend delay



Benefit of shortend delay

2-3 days 
delay

10-14 days 
delay

time

fraction of 
infected 
people

Prevalence

1. Reduce unwanted increase of prevalence
→ damps oscillations



Benefit of shortend delay

2-3 days 
delay

10-14 days 
delay

time

fraction of 
infected 
people

Prevalence

1. Reduce unwanted increase of prevalence
→ damps oscillations

2. If manageable prevalence is ethically acceptable:
Allow earlier reboot
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would be optimal according to the best current estimate.
The larger 1�b, the larger the uncertainty. Unless stated
otherwise, we assume b = 0.5.

If instead k
fit(t) crosses the lower threshold � with

confidence level p at time t, we set t◆ = t and a relaxing
measure is taken, i.e., �k

(◆) is chosen negative. Again,
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with the optimum choice �k
(◆)
opt,� defined by

�k
(◆)
opt,� ⌘ � � k

fit (t◆) > 0. (6o)

The process described above is stochastic for two rea-
sons. First, the sampling comes with the usual uncer-
tainties in the law of large numbers. Second, the e↵ect of
policy measures is not known beforehand (even though
it may be learnt in the course of time, which we do not
include here). It should be clear that the faster the test-
ing the more rapidly one can respond to a super-critical
situation.

A significant simplification of the model occurs when
the two thresholds are chosen to vanish,

± = 0, (7a)

in which case

k
(◆) = k

(◆�1) ��k
(◆)
, ◆ = 1, 2, · · · , (7b)

with |�k
(◆)| uniformly distributed on the interval


b |kfit(t◆)|,
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�
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In this case the system will usually tend to a critical
steady state with k(t ! 1) ! 0, as we will show explic-
itly below. In this case the policy strategy can simply be
rephrased as follows. As soon as one has su�cient con-
fidence that k has a definite sign, one intervenes, trying
to bring k back to zero. The only parameter defining the
strategy is ↵.

C. Testing and fitting procedure

Let us now detail the fitting procedure and analyze the
typical time scales involved between subsequent policy
interventions when choosing the thresholds (7). After a
policy change at time t◆, data is acquired over a time
window �t. We then proceed with the following steps to
estimate the time t◆+1

at which the next policy change
must be implemented.

Step 1: Measurement We split the time window

�T◆ ⌘ [t◆, t◆ +�t] (8a)

of length �t after the policy change into the time interval
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
t◆, t◆ +
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Testing delivers the number of currently infected people
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2
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for the time interval (8b) and

N◆,2(�t) = r�t i(t◆ +
�t

2
,
�t

2
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for the time interval (8c), where we recall that r denotes
the number of people tested per unit time. Given those
two measurements over the time window �t/2, we obtain
the estimate

k
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with the standard deviation
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as follows from the statistical uncertainty
q

N◆,�(�t)

of the sampled numbers N◆,�(�t) and standard error
propagation. The above recipe can be replaced by a
more sophisticated Levenberg-Marquardt fitting proce-
dure, which yields more accurate estimates for k(t) with
a smaller uncertainty �k(t). We have confirmed that this
uniformly improves the performance of the mitigation
strategy.
Step 2: Condition for new policy intervention A new

policy intervention is taken once the magnitude |kfit◆ (�t)|
with k

fit

◆ (�t) given by Eq. (8f) exceeds ↵ �k(�t) with
�k(�t) given by Eq. (8g). Here, ↵ controls the accuracy
to which the actual k has been estimated at the time of
the next intervention. The condition

|kfit◆ (�t)| = ↵ �k(�t), (9a)

for a new policy intervention thus becomes
�����ln
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N◆,1(�t)
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s
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1
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. (9b)

Step 3: Comparison with modeling We call
i(t) = U(t)/N the actual fraction of infections (in
the entire population) as a function of time, which we
assume to follow a simple exponential evolution between

Intervention strategy to reach a steady state k = 0

Assume: 
k(t) is constant and jumps when 
policies change

Measure k(t):
• Test r people daily
• Split time interval ∆" in two 
• Infections detected

• Uncertainty:

Obtain quick feedback about new k

DRAFT

The parameter b < 1 describes the uncertainty about the414

e�ects of the measures taken by policymakers. While the415

policymakers aim to reset the growth factor k to Ÿ+, the result416
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Intervention strategy to reach a steady state k = 0

Intervention strategy: 

• If                          :   Restrict
or

• If                          :  Release
or

Convergence to 

kfit < �3 �k

kfit > 3 �k

i > imax

i < imin

Faster & better with more daily tests r

k = 0 ; R = 1

should initially be ~ ¼ of manageable threshold prevalence i0

r � 5/i0



More testing = better result for health, economy and politics
Win-win-win situation! 13

FIG. 5. Performance of the mitigation strategy as a function
of the number of tests r per day, for a fixed value of ↵ = 3
and an initial growth rate k1 = 0.1. We plot the time scale
�t1 (a), and the health (b), economic (c) and political (as
measured by numbers of interventions to achieve a steady
state (d) costs [Eqs. (23)–(25)] as measures of performance.
The circles are the mean values, the vertical lines indicate the
standard deviations of the respective quantities. The large
uncertainties in the economic costs, e.g., are a consequence of
the relatively large uncertainty in the e↵ect of interventions
(b = 0.5). If the latter is better known, the standard deviation
of the cost functions will decrease accordingly.

It might even prove useful not to lift restrictions homo-
geneously throughout the country, but instead to vary the
set of restrictions to be released, or to adapt their rigor.
By way of example, consider that after the spring vaca-
tion school starts in di↵erent weeks in di↵erent cantons.
This regional di↵erence could be exploited to probe the
relative e↵ect of re-opening schools on the local growth
rates k. However, obviously, it might prove politically
di�cult to go beyond such “naturally” occurring di↵er-
ences, as it is a complex matter to decide what region
releases which measures first. A further issue is that the
e↵ects might be unclear at the borders between regions
with di↵erent restrictions. There may also be compli-
cations with commuters that cross regional borders. Fi-
nally, there may be undesired behavioral e↵ects, if region-
ally varying measures are declared as an “experiment”.
Such issues demand careful consideration if regionally
varying policies are applied.

Even if policy measures should eventually not be taken
in a region-specific manner, it is very useful to study
a regionally refined model of epidemic dynamics. In-
deed a host of literature exists that studies epidemio-
logical models on lattices and analyzes the spatial het-
erogeneities. [17, 18] In certain circumstances those have
been argued to become even extremely strong. [19] In
the present paper, we will content ourselves with a few

FIG. 6. Time after which a significant positive growth rate
is confirmed in the worst case scenario for which the growth
rate jumps to k1 = 0.23 after reboot. An intervention will
be triggered in 3-4 days, since in the case that such a strong
growth must be suspected, one should apply a small confi-
dence parameter ↵ ⇡ 1. Results are shown for r = 150000
and r = 200000 tests a day. The circles are the mean values,
the vertical lines indicate the standard deviations for the first
intervention time.

general remarks concerning such refinements. We reserve
a more thorough study of regionally refined testing and
mitigation strategies to a later publication.
Let us thus group the population of Switzerland into

G sets. The most natural clustering is according to the
place where people live, cities or counties. 12 The more
we partition the country, the more spatially refined the
acquired data will be, and the better tailored mitigation
strategies could potentially become. However, this comes
at a price. Namely, for a limited national testing rate
r
tot

, an increased partitioning means that the statistical
uncertainty to measure local growth rates in each region
will increase.
The minimal test rate r

min
that we estimated on the

right-hand side of Eq. (16) still holds, but now for each
region, which can only test at a rate r = r

tot
/G. To

refine Switzerland G regions we thus have the constraint
that the total testing capacity exceeds

r
tot

� Gr
min

⌘ G
(4↵)2

(ln 4)3
k
1

i⇤
. (26)

On the other hand, if testing at a high daily rate r
tot

becomes available, nothing should stop one to refine the

12 One might also consider other distinguishing characteristics of
groups (age or commuting habits, etc.), but we will not do so
here, since it is not clear whether the increased complexity of
the model can be exploited to reach an improved data analysis.
In fact we expect that the number of fitting parameters will very
quickly become too large by making such further distinctions.

DRAFT

Summary of key results111

We argue that the moderate number of 15’000 random tests per112

day yields valuable information on the dynamics of the disease.113

Assuming that at a given time a conservatively estimated114

fraction of about i
ú ¥ 0.07% of the population is currently115

infected [see Eq. 15d], on the order of 10 infected people will116

be detected every day. Can such a small number of detected117

infections be useful at all, given that these numbers fluctuate118

significantly from day to day? The answer is yes. We show119

that after a few days the acquired signal becomes stronger120

than the noise level. It is then possible to establish whether121

the infection number is growing or decreasing and, moreover,122

to obtain a quantitative estimate of the instantaneous growth123

rate k(t).124

One of our central results is Eq. (13a) for the time where125

the signal becomes clear, which we rewrite in the simplified126

form127

�t1 = C

(k2

1
r)1/3

, [1]128

where k1 is the current growth rate of infections to be detected,129

and r is the number of tests per day ‡. The numerical constant130

C depends on the required signal to noise ratio. A typical131

value when detecting large values of k1 is C ¥ 30 ≠ 40.132

This result shows that the higher the number of tests r per133

day, the shorter the time to detect a growth or a decrease of134

the infected population. The smaller the current growth rate135

k1, the longer the time to detect it above the noise inherent136

to the finite sampling.137

How long would it take to detect that a release of restrictive138

measures has resulted in a nearly unmitigated growth rate of139

the order of k1 = 0.23 (which corresponds to doubling every 3140

days)? Even with a moderate number of r = 15Õ000 per day,141

we find that within only �t1 ¥ 3≠4 days such a strong growth142

will emerge above the noise level, such that countermeasures143

can be taken (see Fig. 6). During this short time, the damage144

remains limited. The infection numbers will have risen by a145

multiplicative factor between 2 and 3. This degree of control146

must be compared to a situation where no information on the147

current growth rate is available, and where the first e�ects of148

a new policy are seen in the increased number of symptomatic,149

sick people only 10-14 days later. Over this time span, with150

a growth rate of k1 = 0.23, the infection numbers will have151

grown by a factor of 10-30 before one realizes eventually that152

an intervention must be made.153

Random testing decreases both the time scale until informed154

policy adjustments can be taken and the temporal fluctuations155

of the infection numbers. As in any feedback and control156

loop, the more frequent the testing is, the shorter are the157

delay times, and thus the smaller are the fluctuations. The158

various benefits of increasing the testing frequency are shown159

in Fig. 5, which are obtained by simulating a specific mitigation160

strategy, where we built in the uncertainty about the e�cacy161

of political interventions. The shorter delay times and the162

reduced fluctuations result in decreased strain on the health163

system, lower economic costs, and a lower number of required164

interventions.165

‡ If the fraction of infected people can be measured via sewage water, r will be related to the number
of people connected to a given sewage plant. But at this point, the relationship between such data
and the actual current number of infections remains a topic for research. Of course, once key
parameters such as the lag time between infection and incidence of biomarkers in sewage are
known, sewage tests could become highly competitive.

In addition to these benefits, a higher testing rate r also 166

opens the opportunity to analyze geographic di�erences and 167

refine the mitigation strategy accordingly, as we discuss in Sec. 168

7. 169

Massive testing 170

If the massive frequency of 1.5 million tests per day becomes 171

available in Switzerland, it will be possible to test any Swiss 172

resident every 5 to 6 days. If the infected people that have 173

been detected are kept in strict quarantine (such that they 174

will not infect anybody anymore with high probability), such 175

massive testing could be su�cient to prevent an exponential 176

growth in the number of cumulated infections without the need 177

of draconian physical distancing measures. We now explain 178

qualitatively our approach to reach this conclusion (Ref. (5) 179

gives a more detailed quantitative analysis). 180

The required testing rate can be estimated as follows. Let 181

�T denote the average time until an infected person infects 182

somebody else. The reproduction number R, i.e., the number 183

of new infections transmitted on average by an infected person, 184

falls below 1 (and thus below the threshold for exponential 185

growth) if non-diagnosed people are tested at time intervals of 186

no more than 2�T . Thus, the required number of tests over 187

the time 2�T , the full testing rate ·
≠1

full
, is 188

·
≠1

full
= NCH

2�T
, [2a] 189

where 190

NCH = 8Õ500Õ000 [2b] 191

is the number of inhabitants of Switzerland. § Without social 192

restrictions, it is estimated that (9) 193

�T ¥ 3 days, [3a] 194

such that 195

·
≠1

full
= 1.4 ◊ 106

/days, [3b] 196

i.e., about 1.4 million tests per day would be required to control 197

the pandemics by testing only. If additional restrictions such 198

as physical distancing etc., are imposed, �T increases by a 199

modest factor and one can get by with indirectly proportionally 200

fewer tests per day. Nevertheless, on the order of 1 million 201

tests per day is a minimal requirement for massive testing to 202

contain the pandemics without further measures. 203

However, even while the Swiss capabilities are still far from 204

reaching 1 million tests per day, testing for infections o�ers two 205

important benefits in addition to identifying people that need 206

to be quarantined. First, properly randomized testing allows 207

to monitor and study the e�ciency of measures that keep the 208

reproduction number R below 1. This ensures that the growth 209

rate k of case numbers and new infections is negative, k < 0. 210

Second, frequent testing, even if applied to randomly selected 211

people, helps suppress the reproduction number R and thus 212

allows policy to be less restrictive in terms of other measures, 213

such as physical distancing. 214

To quantify the latter benefit, observe that the e�ect of 215

massive testing on the growth rate k is proportional to the 216

testing rate (5). Let us assume that without testing or social 217

measures one has a growth rate k0. Then, if the testing rate 218

§Note that if tests take the nonvanishing time t
test

to yield a diagnosis, this time needs to be
subtracted from the denominator in Eq. (2a), thereby resulting in an increase of the full testing rate
·≠1

full
.
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Concrete benefit of random testing 

versus

postdiction based on symptomatic cases?

Most important benefit: Monitoring sudden release of restrictions:

Switzerland: 11th of May  and 8th of June 2020
Later: - Re-opening universities & high schools 

- Re-opening borders, 
- Allowing mass gatherings, concerts, festivals



Further benefits:

- Precise, undelayed mapping of symptomatic/asymptomatic cases 
- Data allows to fix epidemiological parameters 

→  improve predictability

Concrete benefit of random testing 

versus

postdiction based on symptomatic cases?



Concrete benefit of random testing 

versus

postdiction based on symptomatic cases?

Direct benefits when releasing restrictions:

Like upgrade from basic health insurance to private premium insurance!



Reduced increase of prevalence after policy release

Increase of prevalence Increase of health costs, health damage
Increase of death toll

Reduce 
damage!
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Lives saved by random testing



What is the current prevalence?

We don’t know! 

But we can estimate it.



How many people were already infected some time?

N. Ferguson et al,
Covid19 Report No.13

https://mrc-ide.github.io/covid19estimates/#/total-infected
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Sero-prevalence (antibodies) tested:   

→ Estimate of acute prevalence just before lockdown :

Halving time after lockdown:  8-10 days 

Estimated prevalence after 50 days of lockdown:

SP ⇠ 5.5%
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Estimate of prevalence for the Canton of Geneva

Sero-prevalence (antibodies) tested:   

→ Estimate of acute prevalence just before lockdown :

Halving time after lockdown:  8-10 days 

Estimated prevalence after 50 days of lockdown:

SP ⇠ 5.5%

↔ 4-15 people in 10’000 are acutely infected

(↔ 2 people in 10’000 tested positive over last 10 days)

ipeak ⇠ (0.4� 0.6) · SP ⇡ 2.5� 4%

i0 ⌘ ipeak(2
�6 � 2�5) ⇡ 0.0004� 0.0015%



Lives saved by random testing



Costs

Cost per tested person 

PCR analysis  ~ 20 CHF

Logistics: ~ 30 CHF

- Call centers, Bureau of statistics

- Test centers, medical staff

Could be avoided 
with self-tests 
sent by mail
(like in the UK)
But: currently not 
allowed in CH



Where to test best? 

Vulnerable cities:

Geneva
Lausanne
Basel



Statistical sampling: Previous experience?

Earliest: Iceland (but self-selected sampling)   i0 = 0.88%

First statistically random sampling in Austria (April 11)   i0 = 0.33%

San Francisco Mission Bay: 
50% of  population sampled:  i0 = 2.1% ; 

6% in subgroup

Just started: UK: 100’000 tested people REACT1 program

Replace randomly testing people by testing sewage 
water?



Statistical sampling: Test daily mixes of sewage (PCR)?

• Validation
Proportionality of sewage signal to infection numbers?
Fluctuations due to dilution by rain, insufficient mixing?

• Calibration: translating signal into # of infected people

• Delay between infection and dectability in feces

Open questions about 
sewage screening

Ch. Ort et al., EAWAG, Switzerland





Outlook 

• Logistics of testing? Testing sub-groups? 

• Optimal tests? (Self-applied saliva tests?)

• Sewage

• Geographic refinements: 

Fit matrix K and intervene regionally 

dIm
dt

= Kmn(t)In



Wir schaffen Wissen – heute für morgen

Summary

• Random testing requires modest 
numbers of people per day 

• It significantly shortens the delay in 
feedback and control loop

→ more efficient and faster
→ saves lives and reduces damage

• Informs about actual infection rate
→ input & constraints for 

epidemiological models
→ better forecasts



How long until the crisis ends?

• until a vaccine is found
Or
•Maintaining the infection fraction at a 
manageable level i0: 

~ 5-10 days~ 0.7

~ 0.01 (?)

Timm = fimm
Tinf

i0
⇠ 1� 2 years



Random COVID19 testing

Safe Reboot
Less Damage

Saved Lives


