

EDIPO: Alternative design without Ti pole

X. Sarasola P. Bruzzone

SWISS
PLASMA
CENTER

Alternative design without titanium pole

- **2018:**
 - 4 coils (47 turns/pancake)
 - 14.5 T in the center aperture

H-shape test well, no Ti pole

Alternative design without titanium pole

- **2018**:
 - 4 coils (47 turns/pancake)
 - 14.5 T in the center aperture

H-shape test well, no Ti pole

EDIPO: ALTERNATIVE DESIGN WITHOUT TITANIUM POLE

Magnetic model

 The conductor area required to reach 15 T in the center of the aperture is very sensitive to the thickness of the test well (i.e., location of WP)

Test well thickness (mm)	3.0	5.0	7.5
# turns/pancake	52	54	60
Ins conductor area (mm²)	12402	12879 (+4%)	14310 (+15%)
$I_{op} = 0.85 \times I_{ss} \text{ (kA)}$	11.66	11.46	10.87
B _{coil} (T)	15.95	15.99	16.11
B _{center aperture} (T)	14.97	14.96	14.99

EDIPO, magnetic model

Magnetic model

• For t_{TW} = 3.0 mm, the alternative without Ti pole is **more efficient** than the current baseline and the 4-coil-design alternative

- V pad and pole 2 are attracted towards the test well:
 - V pad: $F_v = -2.5 \text{ MN/m}$
 - Pole 2: $F_y = -0.5 \text{ MN/m}$

ANSYS Release 19.0 Build 19.0 ELEMENTS PowerGraphics EFACET=1 MAT NUM

EPFL

Deformation

 During powering of the magnet, the iron parts experience forces in the directions highlighted by the arrows in the bottom right plot.

Cool-down

ď

EDIPO: ALTERNATIVE DESIGN WITHOUT TITANIUM POLE

Nominal field

<u>რ</u>

Nominal field

Keys at room temp

- Coils are essentially stress-free at room temperature (small lateral interference) and after cool down (shell is made of steel)
- After powering the stress remains below 120 MPa except in one corner in the low field region

EPFL

Stress in the coils (horizontal)

- Coils are essentially stress-free at room temperature (small lateral interference) and after cool down (shell is made of steel)
- After powering, the horizontal stress remains below 110 MPa

Nominal field

Sarasola

Stress in the test well

Goal is to have a stress-free test well

Load step	Membrane (MPa)	Memb+bend (MPa)
Room temp	115	116
Cool-down	417	422
Nom. field	20	296

Sarasola

ANSYS Release 19 Build 19.0 PLOT NO. 1 NODAL SOLUTION STEP=2 SUB =1

.296E+09

.127E+09

.169E+09

.296E+09 .338E+09 .380E+09

TIME=2 S1

Stress in the vertical pad + iron insert

 Vertical pad and iron insert satisfy stress criteria except in one corner

Sarasola

EPFL

Stress in the iron yoke

Iron yoke satisfies stress criteria

Cool-down

Nominal field

ന :

EDIPO: ALTERNATIVE DESIGN WITHOUT TITANIUM POLE

Conclusions

- The use of detachable poles and the elimination of the Ti pole result in a more efficient coil design
- The goal is to have a stress-free test well:
 - In practice, very moderate stress is applied to the test well
 - A gap (<1 mm) opens between coils and test well during powering
- Stress in the coils is always very moderate:
 - Everywhere below 120 MPa
 - Except one localized peak of 147 MPa (low field region)
- Only a peak of principal stress above the allowable limit is observed in the vertical pad + iron insert