

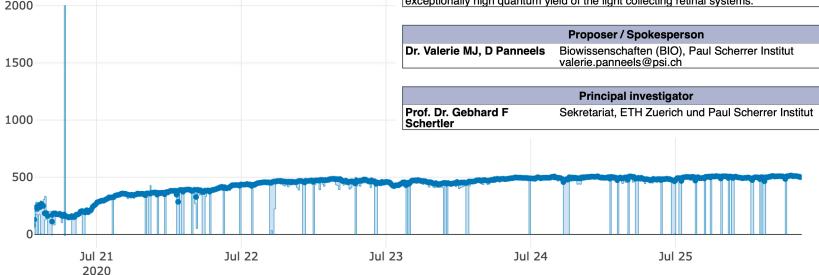
KW30 Photon Overview

Week summary:

- *Requested*: 12 keV, 50 Hz, normal SASE spectrum, short pulse, >200 μJ
- *Delivered*: Machine very stable, constant increase in pulse energy, and reached a stable **500** µJ mid-week

				_		-
30	Mon 20	MS	MS	MS	Milne C.	
	Tue 21	AC	ΑE	ΑE	12 keV	L
	Wed 22	ΑE	ΑE	ΑE	Pannéels	L
	Thu 23	ΑE	ΑE	ΑE	Rhodopsin	L
	Fri 24	ΑE	ΑE	ΑE		:
	Sat 25	AE	AC	МС		;
	Sun 26	МС	МС	МС		

Proposal 20200597

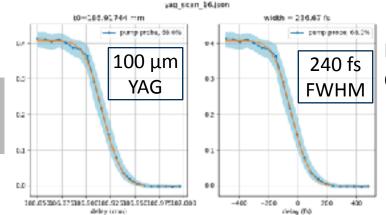

Big thanks to Simona, Florian and all the people who contributed to SwissFEL operation in the last three weeks!

The ultrafast time-resolved activation mechanism of visual pigments, prototypical G protein-coupled receptors.

Abstract

Mammalian rhodopsin is our receptor for vision, belonging to the large G protein-coupled receptor family. Upon photon absorption, the chromophore retinal in the rhodopsin binding pocket undergoes isomerisation from 11-cis to all-trans, one of the fastest processes in biology, triggered on a time-scale of femtoseconds. Our structural dynamics project on rhodopsin in the ultrafast regime using time-resolved pump-probe serial femtosecond crystallography with the brilliant and short X-ray pulses of the SwissFEL will illuminate the exquisite stereoselectivity of the retinal isomerisation from cis to trans and will explain the exceptionally high quantum yield of the light collecting retinal systems.

= ktth = 142.07 fs

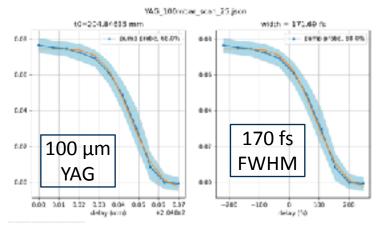

pure) probe, 6809.

140 fs

FWHM

PAUL SCHERRER INSTITUT

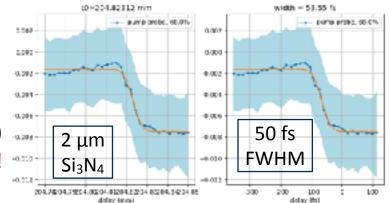
Timing results: Confirmed shorter pulse


Pump-probe signal on YAG using 480 nm Topas (100 fs FWHM) Consistently 240 fs FWHM signal rise time

60-33.24124 mm

ID-21 ID-22 30.24 10.26 10.20 30.50

SCIN4_scan_GG_1B.json


Pump-probe signal on Si₃N₄ using 480 nm Topas (100 fs FWHM) Consistently 140 fs FWHM signal rise time¹

Pump-probe signal on YAG using 800 nm (35 fs FWHM) Changes from 240 fs to 170 fs

2 µm

 Si_3N_4

SIBN4 500mbar scan 31 (son

Pump-probe signal on Si₃N₄ using 800 nm (35 fs FWHM)

New ultrafast measurement record: 50 fs FWHM!