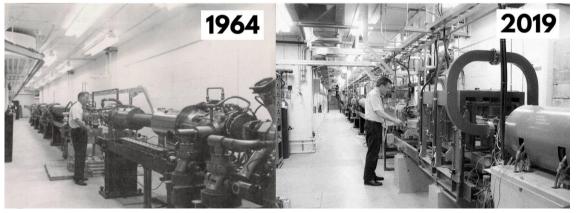


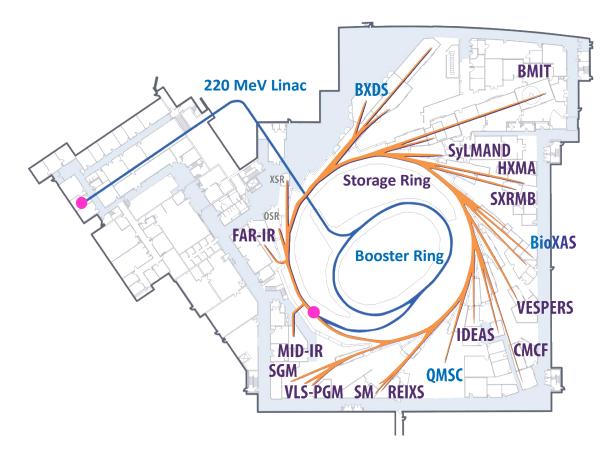
Canadian Light Source An Introduction for LEAPS WG2 Workshop


- CLS Canadian Light Source
- Canada's only synchrotron
- National Facility located on a University campus

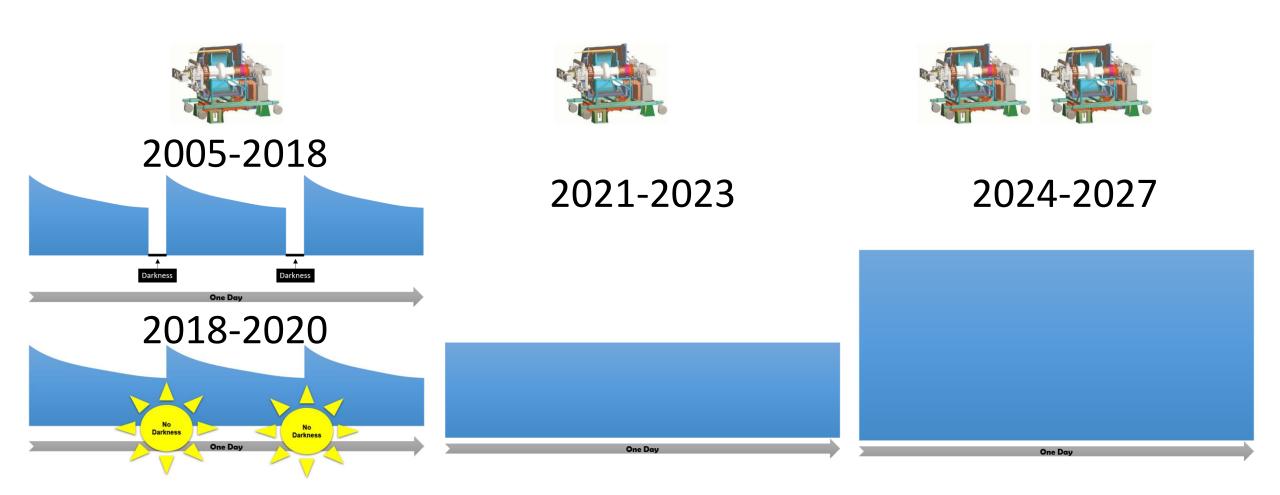
Accelerators at CLS

- 300 MeV Linac, 2856 MHz, from 1964, originally used in the Saskatchewan Accelerator Laboratory, still used to inject the booster synchrotron.
- 2.9 GeV booster, 500 MHz RF, 1 Hz rep rate.
- 2.9 GeV, 171 m circumference Storage Ring.
- 1 CESR/B type SRF cavity.
- RF power limited to 220 mA.

SAL linac tunnel...


...CLS linac tunnel

CLS located on campus at the University of Saskatchewan

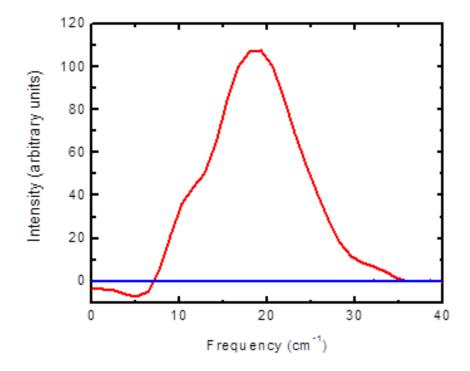

Beamline Overview

- 23 Beamlines (depending on how you count branch lines).
- 1 remaining straight available for the last beamport (funding application submitted for beamline, decision due Nov 2020).
- Many IDs constructed in CLS magnet lab and local industry.



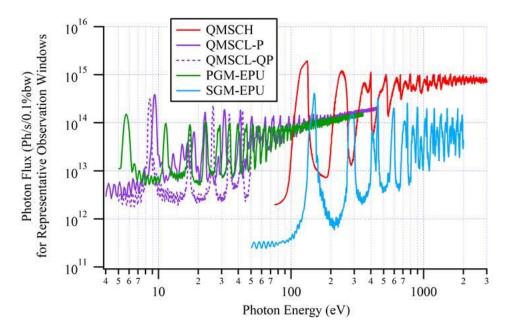
Top-Up and Current upgrade plans


BMIT long beamline for imaging


- Energy range on bend 12.6-40 keV
- Energy range on SC ID 25-150 keV
- Techniques:
 - Computer Tomography (CT)
 - Conventional Absorption Imaging
 - In-line (Propogation-based) Phase
 Contrast Imaging (PBI)
 - K-edge Subtraction Imaging (KES)
 - Monochromatic Microbeam Radiation
 Therapy

CSR Mode for FarlR

- Special dedicated shifts for Far IR.
- 10⁴ enhancement in 7-25 cm⁻¹



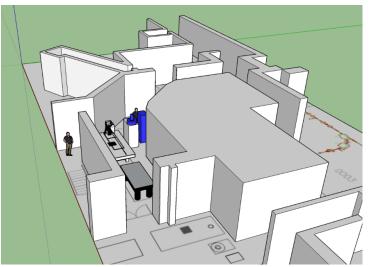
QMSC and SGM/PGM Double ID Capabilities

QMSC double ID at CLS built in Saskatchwan

Parameter	QMSC-HE	QMSC-LE	SGM-EPU	PGM-EPU
Photon Energy Range [eV]	200-1000	15-200	250-1560	12-300
Effective K-value	4.51	9.64	4.22	13.95
Undulator Period [mm]	55	180	54.2	142
Length of Magnetic Array [mm]	3923	3834	1638	1603
Number of Magnetic Periods (Full periods + 1 end period)	70+1	20+1	29+1	10+1

Far-IR Undulat

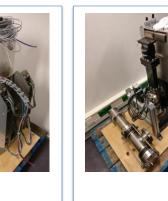
sochronous Bend


Mid-IR Undul:

Fritz Haber Institute IR FFL

IR FEL Plans

- University consortium with CLS as the institute to manage the user program.
- Application submitted based on design of the FHI IR FEL.
- Funding outcome announcement due Nov 2020.
- To be located in a new building being built at the University of Waterloo, near Toronto.



Electron Source Lab

- New Electron Source Lab under construction, due for completion end 2020.
- Plan to install MAX IV 500 kV pulsed DC electron source and TU/e RF Photocathode.
- Development of capabilities in electron sources, in particular for CLS2 plans.

CLS2 Plans for a New Ring

Concept building drawing

Preliminary lattice design parameters

CLS	2.0	2.1	2.2	
Energy		3.0		GeV
Size	590.4	589.8	588.0	m
Periodicity		16		
$\nu_{\rm x}$	62.2	68.2	66.15	
v_y	22.3	20.3	21.3	
ε	37	39	25	$_{\rm pm}$
δ	0.08	0.08	0.10	%
Straights				
β_{x}	8.94	1.24	2.23	m
β_{y}	3.43	11.96	5.95	m
η _x	0.01	0.0	0.0	m
α_{c}	5.0	2.6	5.4	x10-5
RF freq.		500		MHz
RF voltage		3		MV
Harm. #	984	983	980	
Current		300		mA
Coupling		10		%
Lifetime	9.9	5.1	9.2	hr