

Alvra Commissioning beamtime

October 10th & 11th, 2020

Schedule KW41

- 12 keV photon energy
- 100 pC mode

SARFE10-PBPG050:PHOTON-ENERGY-PER-PULSE-AVG\$max

SARFE10-PBPG050:PHOTON-ENERGY-PER-PULSE-AVG\$mean

SARFE10-PBPG050:PHOTON-ENERGY-PER-PULSE-AVG\$min

Timing results (Alvra) Si₃N₄

Pump-probe signal on 2 μm thick Si₃N₄ using 800 nm (35 fs FWHM)

October 2020, 100 pC mode (11 fs e-bunch)

Timing results (Alvra) YAG

Loop of 65 consecutive Xray/laser cross correlation curves.

1.010

-0.6

-0.4

-0.2

0.2

0.6

Timing results (Bernina)

Pump-probe signal on using 800 nm (35 fs FWHM)

Conclusions & outlook

- Fastest transient measured is in the range of 70 fs, same as in July.
- The same result obtained with three different lasers (800 nm Globi & 800 nm Papamoll & NOPA)
- Most likely this is limited by the sample response?

- We need a diagnostic tool with faster response, to be able to see potential improvement achieved on the Xray pulse duration
- It would be nice to be able to tune the e-bunch length and see the effect on the cross correlation curves.