Low Emittance Muon Source for Muon g–2/EDM at J-PARC

Glen Marshall
TRIUMF

for the TRIUMF S1249 Collaboration
(KEK, RIKEN, and TRIUMF)
19 October 2016

Physics of Fundamental Symmetries and Interactions PSI2016

With thanks for their support to:

- Natural Sciences and Engineering Research Council, Canada
- TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics

Outline

- ► An alternative method to measure muon anomalous magnetic moment a_{μ} = (g-2)/2 and EDM
- ▶ Thermal muon beams: muonium (μ^+e^-) as an ion source
- ▶ Demonstration of muonium yields for the J-PARC muon g-2/EDM experiment

a_{μ} : Results of BNL E821

$$a_{\mu}^{\mathrm{E821}} = 116\ 592\ 091(54)(33) \times 10^{-11}$$
 $a_{\mu}^{\mathrm{SM}} = 116\ 591\ 803(1)(42)(26) \times 10^{-11}$
 $\Delta a_{\mu} = a_{\mu}^{\mathrm{exp}} - a_{\mu}^{\mathrm{SM}} = 288(63)(49) \times 10^{-11}$

A. Hoecker and W.J. Marciano, PDG Review of Particle Properties (September 2014)

- ▶ anomalous moment a_{μ} differs from SM predictions by \sim 3 σ
- Motivates improvements in the SM prediction and experimental measurements
 - ► FNAL E989 (under construction)
 - ► J-PARC E34 (proposed)

F. Jegerlehner and A. Nyffeler (JN), Phys. Reports 477, 1 (2009)

M. Davier et al. (DHMZ), Eur. Phys. J. C 71, 1515 (2011)

K. Hagiwara et al. (HLMNT), J. Phys. G 38, 085003 (2011)

G.W. Bennett and 75 others (E821), Phys. Rev. D 73, 072003 (2006)

J-PARC g–2/EDM vs FNAL989/BNL821

$$ec{\omega}_a = ec{\omega}_s - ec{\omega}_c = -rac{q}{m_\mu} \left[a_\mu ec{B} - \left(a_\mu - rac{1}{\gamma^2 - 1}
ight) rac{ec{eta} imes ec{E}}{c}
ight]$$

Fermilab (similar to BNL)

- eliminate effect of E-field via "magic" momentum:
 - $\gamma^2 = 1 + a^{-1}$
 - ightharpoonup p_u = 3.09 GeV/c required
- very uniform B
- electric quadrupole field focusing
- ► B = 1.45 T
- $\rho = 7 \text{ m}$
- periodic calorimeters with some tracker modules

J-PARC

- eliminate effect of E-field via E = 0
- very uniform B in compact region
- $\begin{tabular}{ll} \hline & weak B field focusing, no E \\ & focusing must use low-emittance \\ & "cold" μ beam \\ \end{tabular}$
 - ▶ polarization reduced to 50%
 - allows spin reversal
- ► choose p_{μ} = 0.3 GeV/c
- ► B = 3 T
- $\rho = 0.33 \text{ m}$
- uniform tracker detection along stored orbit (EDM sensitivity)

J-PARC g–2/EDM vs FNAL989/BNL821

$$ec{\omega}_a = ec{\omega}_s - ec{\omega}_c = -rac{q}{m_\mu} \left[a_\mu ec{B} - \left(a_\mu ec{B} - \left(a_\mu ec{B} ec{C}
ight) rac{ec{eta} imes ec{E}}{c}
ight]$$

Fermilab (similar to BNL)

- eliminate effect of E-field via "magic" momentum:
 - $\gamma^2 = 1 + a^{-1}$
 - ightharpoonup p_u = 3.09 GeV/c required
- very uniform B
- electric quadrupole field focusing
- ► B = 1.45 T
- $\rho = 7 \text{ m}$
- periodic calorimeters with some tracker modules

J-PARC

- eliminate effect of E-field via E = 0
- very uniform B in compact region
- $\begin{tabular}{ll} \hline & weak B field focusing, no E \\ & focusing must use low-emittance \\ & "cold" μ beam \\ \end{tabular}$
 - ▶ polarization reduced to 50%
 - allows spin reversal
- choose $p_{\mu} = 0.3 \text{ GeV/c}$
- ► B = 3 T
- $\rho = 0.33 \text{ m}$
- uniform tracker detection along stored orbit (EDM sensitivity)

J-PARC g–2/EDM vs FNAL989/BNL821

$$ec{\omega}_a=ec{\omega}_s-ec{\omega}_c=-rac{q}{m_\mu}\left[a_\muec{B}-\left(a_\mu-rac{1}{\gamma^2-1}
ight)arphi_c^{2}
ight]$$

Fermilab (similar to BNL)

- eliminate effect of E-field via "magic" momentum:
 - $\gamma^2 = 1 + a^{-1}$
 - ightharpoonup p_u = 3.09 GeV/c required
- very uniform B
- electric quadrupole field focusing
- ► B = 1.45 T
- $\rho = 7 \text{ m}$
- periodic calorimeters with some tracker modules

J-PARC

- eliminate effect of E-field via E = 0
- very uniform B in compact region
- $\begin{tabular}{ll} \hline & weak B field focusing, no E \\ & focusing must use low-emittance \\ & "cold" μ beam \\ \end{tabular}$
 - ▶ polarization reduced to 50%
 - allows spin reversal
- choose $p_{\mu} = 0.3 \text{ GeV/c}$
- ► B = 3 T
- $\rho = 0.33 \text{ m}$
- uniform tracker detection along stored orbit (EDM sensitivity)

J-PARC g–2 schematic

J-PARC g–2 statistics goals (Stage 1)

Statistical uncertainties

- Goals
 - $\Delta \omega_a / \omega_a = 0.36 \text{ ppm}$ (0.163/PN^{1/2})
 - ➤ BNL E821 σ_{stat} = 0.46 ppm
 - $\blacktriangleright \Delta d_{\mu} = 1.3 \times 10^{-21} e \cdot \text{cm}$
 - ► E821 (-0.1±0.9)×10⁻¹⁹ $e \cdot \text{cm}$
 - ► Δd_e < 1.05×10⁻²⁷ $e \cdot \text{cm}$

Can we improve the conversion efficiency of the muon beam to ultra-slow muons?

- Running time
 - ► measurement only: 2×10⁷ s
- Muon rate from H-line
 - ► 1MW, SiC target: 3.2×10⁸ s⁻¹
- Conversion efficiency to ultra-slow muons
 - ► Mu emission (S1249), laser ionization
 - ▶ lose polarization: 100% → 50%
 - ▶ 2.15×10⁻³ Stage 2 goal is 0.01)
 - Acceleration efficiency including decay
 - ▶ RFQ, IH, DAW, and high- β : 0.52
- Storage ring injection, decay, kick
 - ▶ 0.92
- Stored muons
 - \rightarrow 3.3×10⁵ s⁻¹
- ▶ Detected positrons (ϵ = 0.12)
 - ▶ 4.0×10⁴ s⁻¹

	Surface beam	Thermal beam
E _k , MeV	3.4	0.03×10 ⁻⁶
p, MeV/c	27	2.3× 10 ⁻³
Δ p/p, rms	0.05	0.4
∆p, MeV/c	1.3	1×10 ⁻³

- Thermal diffusion of Mu (μ^+e^-) into vacuum
 - ► decay length ~14 mm

	Surface beam	Thermal beam
E _k , MeV	3.4	0.03×10 ⁻⁶
p, MeV/c	27	2.3× 10 ⁻³
Δ p/p, rms	0.05	0.4
∆p, MeV/c	1.3	1×10 ⁻³

- Thermal diffusion of Mu (μ^+e^-) into vacuum
 - ► decay length ~14 mm

	Surface beam	Thermal beam
E _k , MeV	3.4	0.03×10 ⁻⁶
p, MeV/c	27	2.3× 10 ⁻³
Δ p/p, rms	0.05	0.4
∆p, MeV/c	1.3	1×10 ⁻³

- Thermal diffusion of Mu (μ^+e^-) into vacuum
 - ► decay length ~14 mm

	Surface beam	Thermal beam
E _k , MeV	3.4	0.03×10 ⁻⁶
p, MeV/c	27	2.3× 10 ⁻³
∆p/p, rms	0.05	0.4
∆p, MeV/c	1.3	1×10 ⁻³

- Thermal diffusion of Mu (μ^+e^-) into vacuum
 - ► decay length ~14 mm
- Ionization
 - ► $1S\rightarrow 2P\rightarrow unbound (122 nm, 355 nm)$
- Acceleration
 - ▶ E field, RFQ, linear structures
 - ▶ adds to p_7 but not significantly to Δp

Muonium in vacuum – TRIUMF S1249

- Muonium (μ^+e^- , Mu) in vacuum was produced at TRIUMF many years ago for experiments to search for $\mu^+e^- o \mu^-e^+$
- Other groups used similar methods at Los Alamos, PSI, RAL, and RIKEN, also for Mu spectroscopy
- ► A KEK/RIKEN/TRIUMF/UVic collaboration to develop Mu in vacuum for J-PARC *g*–2 began in 2009, using surface muons from TRIUMF

Identifying Mu in vacuum – TRIUMF S1249

- A multi-step process of:
 - μ^+ thermalization, μ^+e^- formation (52%, \mathcal{P}_{μ} =50%).
 - μ^+e^- escapes into voids in evacuated silica *nanostructure* (~100%).
 - $μ^+e^-$ migrates ("diffuses") to nearby material boundary (\sim few %).
- Identify and characterize by:
 - time and position(y,z) correlations of muon decays from e⁺ tracking (drift chambers).
- Muons decay in:
 - ▶ the target, as μ^+e^- and μ^+ .
 - ▶ vacuum, in flight, as μ^+e^- .
 - ▶ surrounding materials (μ^+e^- or μ^+).
- Provides image of projection of decay locations in (y,z), as a function of time.

Identifying Mu in vacuum – TRIUMF S1249

- A multi-step process of:
 - μ^+ thermalization, μ^+e^- formation (52%, \mathcal{P}_{μ} =50%).
 - μ^+e^- escapes into voids in evacuated silica *nanostructure* (~100%).
 - ▶ $μ^+e^-$ migrates ("diffuses") to nearby material boundary (~ few %).
- Identify and characterize by:
 - time and position(y,z) correlations of muon decays from e+ tracking (drift chambers).
- Muons decay in:
 - ▶ the target, as μ^+e^- and μ^+ .
 - ▶ vacuum, in flight, as μ^+e^- .
 - ▶ surrounding materials (μ^+e^- or μ^+).
- Provides image of projection of decay locations in (y,z), as a function of time.

Mu in vacuum: 2010 and 2011

Aerogel samples

- all high uniform and optically transparent
- ▶ different preparations
 - ➤ hydroscopic nature of surfaces
 - ➤ different densities: 27-180 mg/cm³

Procedure

- ▶ low momentum subsurface μ^+
- ▶ set to stop ~50% in aerogel

Observations

 no obvious dependence of yield on density or preparation

► Partial yields ~0.003

- ▶ into regions 1-3, distance 10-40 mm from aerogel surface
- normalized to all muon decays observed
 - some care required to interpret yield expected with different beams and targets

P. Bakule et al., Prog. Theor. Exp. Phys. 2013, 103C01 (2013).

Laser ablation of aerogel surface

➤ Simulations based on a diffusion model showed increased yields from structured surface (channels, holes) → laser ablation by RIKEN group

$$d = 170 \mu, 220 \mu$$

p = 500 μ

$$d = 200 \mu, 270 \mu$$

p = 375 μ

Images by S. Kamal, LASIR and Dept. of Chemistry, UBC.

Photo of laser-ablated aerogel used at TRIUMF. Curvature is due to the removal of material on the right.

Results of 2013 data

- Used a model-independent approach to estimate yields
- ► For 0.3 mm structure, observed ~10 times yield previously reported from 2011 data, 8 times yield found in similar flat target in 2013.
- Model-independent approach cannot independently estimate total yield or partial yield near target for laser ionization estimates
 - ▶ apply diffusion model analysis

Table 1 Yield of Mu in the vacuum region 1–3. For all laser processed samples, the diameter of the structure is $270 \mu m$.

Sample	Laser-ablated structure	Vacuum yield
	(pitch)	$(per 10^3 muon stops)$
Flat	none	3.72 ± 0.11
Flat (Ref. [7])	none	2.74 ± 0.11
Laser ablated	$500~\mu\mathrm{m}$	16.0 ± 0.2
Laser ablated	$400~\mu\mathrm{m}$	20.9 ± 0.7
Laser ablated	$300~\mu\mathrm{m}$	30.5 ± 0.3

G.A. Beer et al., Prog. Theor. Exp. Phys. 2014, 091C01 (2014).

Diffusion model analysis: ablated target

 χ^2 of fits to simulations at different temperatures

Diffusion simulation predicts rate, position, and time of Mu in vacuum to enable

J-PARC q-2/EDM design

Laser ablated (pitch = 0.3 mm) aerogel:

- much better signal to background enables more reliable diffusion model comparison
 - simultaneous fit to 3 vacuum regions at T=322 K shown
- ▶ best fit emission velocities correspond to 322 ± 5(stat) K
- ► D=870 \pm 20 cm² s⁻¹, χ^2 = 168/140 (p=5%)

Simulation results tell us

- ▶ Mu yield and appearance time in region close to target surface
- speed distribution is (near) thermal
- ▶ yields under other conditions of muon stopping distribution, e.g., for J-PARC

Spin manipulation of Mu (μ^+e^-) at rest

▶ J-PARC MLF beam: 25 Hz repetition, 2 pulses per repetition

- ▶ 0.6 μ s separation means that period of any Larmor precession of Mu must have a frequency that satisfies ($\omega/2\pi$)×n = 1/(0.6 μ s)
 - ► f = 0.14 MHz/mT \rightarrow 2 π rotation in 0.6 μ s occurs for B = n×0.119 mT

Simulation of Mu time distribution in vacuum for J-PARC beam.

"Siberian Snake" after low beta acceleration will provide independent spin flip.

Next steps for ultra-cold production

- Include laser and DC acceleration components with aerogel target
 - requires high intensity pulsed muon source
 - > RIKEN beams at RAL
 - > J-PARC MLF
- Continue aerogel emission R&D
 - ▶ verify model-dependent estimates at ≤ 5 mm from aerogel surface via laser ionization
 - confirm emission and aerogel survival adjacent to acceleration field
 - ablation parameter optimization
- Develop spin manipulation at rest
 - \blacktriangleright ω_L of Mu \Rightarrow $\Delta \phi = \pi$ in 300 ns at 0.12 mT
 - arrays of decay detectors surrounding target
- Verify G4 simulation of Mu processes in non-uniform materials (ablated aerogel)

RIKEN/RAL ultra-slow muon apparatus (K. Ishida and S. Okada)

Summary

- A measurement of muon g–2 by J-PARC E34 with statistical uncertainty at the level of BNL E821 appears possible
 - ► E821 required time to understand and assess systematic uncertainties; E34 will also require experience to understand and minimize its different systematics.
- Muonium production via structured aerogel makes the Stage 1 goals for an ultra-cold muon beam feasible
 - ▶ further optimization may lead to higher g–2/EDM sensitivity

S1249 collaborators: G.A. Beer, J.H. Brewer, Y. Fujiwara, S. Hirota, K. Ishida, M. Iwasaki, S. Kamal, S. Kanda, H. Kawai, N. Kawamura, R. Kitamura, S. Lee, W. Lee, T. Mibe, Y. Miyake, S. Okada, K. Olchanski, A. Olin, Y. Oishi, H. Onishi, M. Otani, N. Saito, K. Shimomura, P. Strasser, M. Tabata, D. Tomono, K. Ueno, K. Yokoyama, E. Won

J-PARC *q*–2/EDM Collaboration:

 \sim 140 members from 49 institutions in 9 countries

