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The accelerating expansion of the universe suggests that most of the energy in the universe is ‘dark energy" Data Aquisition and Ana|y5i5
Its nature and origin remain unknown. Candidates are either Einstein’s cosmological constant or dynamical . .
dark energy, i.e. the so-called quintessence canonical scalar field. Chameleon fields are a prime example of In summer 2013, g dedicated beam times were used to
dynamical dark energy. Here, we present phase shift measurements for neutron matter waves in vacuum searc.h for hypothetical chameleon dark energy fields. The
and in low pressure Helium using a method originally developed for neutron scattering length published results are presented here. |
measurements in neutron interferometry. We search for phase shifts associated with a coupling to scalar In 2015 and.2016, further measurements were carried out. The
fields and set stringent limits for scalar chameleon fields. data evaluation process is still on-going.
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