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The XENON1T Experiment

e Direct detection of dark matter in the form of WIMPs
(Weakly Interacting Massive Particles) via their elastic
scattering off xenon nuclei.

Currently under construction in Hall B of LNGS and
commissioning of several subsystems.

e ~ 1t LXe in the fiducial volume (2 tons of target LXe).

e Low radioactivity components. <0.75 events/ (tonne - year)
in the region of interest.
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Direct dark matter detection with XENON1T

Principle:
e Prompt scintillation in LXe
Fropertonl 53 ; s (S1), A =178 nm.
g e T e Secondary scintillation (S2) in
e i e GXe.

e (S1/S2) ratio depends on
dE/dx and allows discrimination
between nuclear/electronic.
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Event Reconstruction: WIMP T \/

e Hit pattern of the S2 signal on i | |

top PMTs gives X-Y 6r<3 mm. :ELI

e Drift time provides Z coordinate Gamma ||
0z<0.3 mm.
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The XENON1T TPC

e Low radioactive 3" PMTs from
Hamamatsu model R11410 on top
(127) and bottom (121) arrays
arXiv:1503.07698 [astro-ph.IM].

e Selected material for the TPC: PTFE
99% reflectivity, Torlon, PEEK,
Kapton, OFHC and Stainless steel.

e Drift field of order of O(1 kV/cm).
Extraction field of order O(10 kV/cm)
at liquid-gas interface.

e Extensive electric field simulations in
order to find the best electrode
structure and to ensure the electrical
safety of the detector.
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XENONIT Electrical Requirements

Electrical Requirements:

e Drift field order of O(1 kV/cm) for good
nuclear/electronic discrimination and drift
velocity saturation.

o Extraction field of order O(10 kV/cm) at
liquid-gas interface to ensure a 100%
extraction efficiency.

e Avoid sparks inside the detector.

Simulation Tools:

e Developed a new simulation software,
which takes advantage of the Boundary
Element Method

e Calculations of large scale geometries with
small scale structures are fast and need
less memory than the FEM.
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Electric Field Simulation Technique

e New approach with the boundary element method instead
with finite element method (COMSOL).

e Charge density on each electrode surface element is constant.
e Each element is defined by its type, coordinate and voltage.

e Potential of sub-element j?

N
U= o -G (1)
j=t Cg
e Charge Density of Subelement j.
1 1
o Gi=G(n) = = d*Fs

4meo Js, r—rs
e Coulomb Matrix Element depends on the geometry of the
subelement; it represents the potential at the centre of
subelement i in relation to subelement j with unit charge
density.
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Solving Technique

e For an exact model of a TPC, the dimension of the problem is
very high.

e Solve this problem iteratively with the so-called Robin Hood
method. arXiv:1111.5035 [physics.comp-ph]

e Usage of parallelized Robin Hood solver to perform simulation
on GPUs.

v

e Optimized the code with
- Comegence e OpenCL in order to use GPUs.

e Access of one GPU Cluster in
our group.

Time [s]

e Improved calculation time on a
s : GPU in comparison to a CPU
O el ~ 0.
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XENONIT TPC Simulation

e Several static field
simulation to optimize
the electrode structure
and to localize high
electric field hot spots.

e Ongoing electron
tracking in LXe/GXe and
S2 simulation.

v

Electrode Structure Optical Transparency
PMT Screening Mesh | parallel wires 94.5%
PMT Screening Mesh hex mesh 94.5%
Cathode parallel wires 96%
Gate hex mesh 93%
Anode hex mesh 93%

8/20



XENON1T TPC Parts Status

Completed:

e The TPC design is finalized and all
relevant parts are in production.

e Most of the material has be screened with
Gator arXiv:1103.2125 [astro-ph.IM]

e MySQL database has been programmed
for all the ~800 TPC parts

To do:

e The TPC field cage will be assembled at
UZH and tested for structural
deformations.

e Cleaning of all parts in Miinster.

e Installation of the TPC inside the
Cryostat at LNGS.
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XENONIT TPC test

Test Purpose:

e Measurement of the TPC shrinking (mostly PTFE) in order to
take the shrinking of the drift region into account for Monte
Carlo simulations (LCE).

e Look for any possible deformations and stability. Shrinking @
-100 Degree: ~17.66 mm.

e Tests of the main TPC mechanical components (rings, PTFE
and associated hardware)
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Experimental Setup

Thickness: 4 mm (~3.5) _ 25 mm P Ian :
Thickness: 205mme— Immm 250 e Deformation will be measured
$ 140 mm W 2 using a laser measuring device.
348 mm . .
minesssin @ Cool down to a temperature of
348 mm 15 m
116/ around -100 Degree (LXe).

R 25 e Temperature uniformity will be
achieved with a fan structure.

Thickness: 12mm <

Temperature over several hours

Ongoing;::
e Assembly of the XENON1T
TPC in the machine shop

8

Sensorh- 1424 [m)

Temperaturo (Degree]
8

8
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I

highbay of the UZH. o
® COOldOWﬂ test in the next 2 ‘miuzzvuw Gt Gea0 TR 0520 Tid0  GhZ0 T 05201150
weeks.
V.
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Summary and outlook

A new electric field simulation software has been developed
for the XENON1T TPC and will be extended for particle
tracking in the future.

e S2 simulation module already has been verified with the
XURICH-II detector

e The XENONLT TPC design is fixed and the parts are under
production at different machine shops.

e The XENONL1T TPC is under assembly and testing for
structural deformations at the UZH in these days.

e The installation at LNGS is planned to be in October 2015.
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Any Questions?
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Back Up
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Back Up - XenonlT Exclusion Plot
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Back Up - Subelements primitives
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Back Up - Meshes Results
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Back - Meshes Results
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Back Up - Setup

Thickness: 4 mm (”& 25 mm

Thickness: 205mm<—

|

351 mm

Thickness: 58 inch
1473 mm

Thickness: 12mm
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