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Basic research — electronic devices

Cars, sensors, displays
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Aim of the lecture

Basic concepts of Photoemission spectroscopy
[- How to probe the occupied states ]
* Einstein and the Photoelectric effect
* Photoemission process
* XPS, X-ray photoelectron spectroscopy
* Comparison XAS and XPS
* ARPES, Angle resolved Photoemission Spectroscopy
* Ambient pressure XPS
* XPD, X-ray Photoelectron Diffraction
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PAUL SCHERRER INSTITUT Key Phenomena
Inelastic Scattering Elastic Scattering
_ (Compton) (Thomson)
Incident Auger/Photoelectron
x-ray photon
Fluorescence

Interface
Surface
Bulk

Transmitted
Photon
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Absorption of Photons in the Soft X-ray Range
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Near Edge X-ray Absorption Fine Structure

reflects density of unoccupied states

Also called XANES

Extended X-ray Absorption Fine Structure

reflects spatial location of neighboring atoms
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How can we probe the occupied states?
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Measure energy of Photoelectron
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Note: to be precise, we measure the properties of the photohole
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Aim of the lecture

Basic concepts of Photoemission spectroscopy

* How to probe the occupied states

[' Einstein and the Photoelectric effect

* Photoemission process

* XPS, X-ray photoelectron spectroscopy

* Comparison XAS and XPS

* ARPES, Angle resolved Photoemission Spectroscopy

* Ambient pressure XPS

* XPD, X-ray Photoelectron Diffraction
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Photoelectric effect

Einstein’s Photoelectric
Equation

The electron leaves
the body with energy

Imv?=rv—P,

where /1 is Planck’s constant,
v is the light frequency and
P is the work the electron
has to do in leaving the body.

E,=hv—E;-ed

Eg: Binding energy
e®d: workfunction

Albert Einstein, 1905
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Origin of Workfunction
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Eg: Binding energy
e®: workfunction
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Aim of the lecture

Basic concepts of Photoemission spectroscopy
* How to probe the occupied states
* Einstein and the Photoelectric effect
{- Photoemission process ]
* XPS, X-ray photoelectron spectroscopy
* Comparison XAS and XPS
* ARPES, Angle resolved Photoemission Spectroscopy
* Ambient pressure XPS
* XPD, X-ray Photoelectron Diffraction
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Conservation laws

Energy conservation: (E, = hv — E; —e®)

Momentum conservation: K i + Kny = Kfinal
(but momentum of electron is high, momentum of photon
is small, e.g. =0 at UV energies)
_ _ o108 -]
kphotan - pphnton /h=E /hc~10"m

photon

~ 1 010 m71

k

electron

free electron
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Conservation laws — electron in a crystal
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Three step model
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1) Creating of photoelectron
2) Travel to surface o o
3) Penetrate surface Note: this is a simplified model

P. Willmott, Intro to Synchr. Rad. Page 14
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One-Step Model

three-step model one-step model
E optical  travel transmission E excitation wave matching
excitation tothe  through b intoa at the surface
ofa Surface  surface damped
B fial dde

packet

Ef”TV\/\P"'***JVV\F W =
® @ |®

o
NY

o
N

Page 15

PAUL SCHERRER INSTITUT

Universal curve

100

“Universal”
curve

I(E), mean free path (A)

5 10 50 100 500 1000 500010000
E, electron energy (V)
*Number of electrons reaching the surface is reduced by electron-electron scattering
+Only sensitive to first couple of atomic layers!!
«Clean surface and UHV needed
*Background of scattered electrons with lower kinetic energies (secondaries)
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UPS, XPS, HAXPES

XPS: X-ray Photoelectron Spectroscopy

(or ESCA: Electron Spectroscopy for Chemical
Analysis)

PES: Photoelectron Spectroscopy

ARPES: Angle resolved Photoemission
Spectroscopy

UPS: ultraviolet Photoelectron Spectroscopy
HAXPES: hard X-ray PES

P. Willmott, Intro to Synchr. Rad. Page 17
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Aim of the lecture

Basic concepts of Photoemission spectroscopy

* How to probe the occupied states

* Einstein and the Photoelectric effect

* Photoemission process

* XPS, X-ray photoelectron spectroscopy

* Comparison XAS and XPS

* ARPES, Angle resolved Photoemission Spectroscopy
* Ambient pressure XPS

* XPD, X-ray Photoelectron Diffraction
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XPS — fingerprinting of elements
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XPS - fingerprinting of valence

Increasing oxidation state

~

graphite methanol

T

284 286 288 290 292
Binding energy [eV]

Figure 6.56 A plot of the shift in binding energies of the C s core electron in different
carbon-containing compounds.

Rule of thumb: elements in a higher oxidation state have electrons with higher binding energies

P. Willmott, Intro to Synchr. Rad. Page 20
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Aim of the lecture

Basic concepts of Photoemission spectroscopy

* How to probe the occupied states

* Einstein and the Photoelectric effect

* Photoemission process

* Comparison XAS and XPS

* ARPES, Angle resolved Photoemission Spectroscopy
* Ambient pressure XPS

* XPD, X-ray Photoelectron Diffraction
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Comparison XPS and XAS
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Comparison XPS and XAS
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Leveneur, Jérdme & Waterhouse, Geoffrey & Kennedy, John & Metson, James & Mitchell, David. (2011). Nucleation and growth of
Fe nanoparticles in Si02: A TEM, XPS, and Fe L-Edge XANES investigation. The Journal of Physical Chemistry C. 115. 20978-20985.

10.1021/jp206357c.
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Aim of the lecture

Basic concepts of Photoemission spectroscopy
* How to probe the occupied states
* Einstein and the Photoelectric effect
* Photoemission process
* XPS, X-ray photoelectron spectroscopy
* Comparison XAS and XPS
[' ARPES, Angle resolved Photoemission Spectroscopy J
* Ambient pressure XPS
* XPD, X-ray Photoelectron Diffraction
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From binding energy to density of states
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§ . occupied states
Density of states

Figure 6.49  Energy distribution curves. FDCs are generated by recording the photoelectron
intensity as a function of photoelectron kinetic energy for a fixed photon energy and
detector angle. Assuming a constant transition probability, the intensity at a kinetic energy
Eo = hv — e — Eg is proportional to the local density of states at Fg having the in-plane
wavevector ky selected by the detector orientation. In this schematic, the photoemission
intensity has been plotted as a function of €. for didactical reasons. More commonly,
however, it is plotted as a function of Eg.

P. Willmott, Intro to Synchr. Rad. Page 26
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To band maps

Angle-resolved photoelectron spectroscopy (ARPES)

(Real) x-Space

(Momentum) k-Space
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Localized core electrons Constant-

Delocalized valence energy surface

band electrons
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To band maps
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EDM: Energy Distribution Map
MDC: Momentum Distribution Curve
EDC: Energy Distribution Curve

P. Willmott, Intro to Synchr. Rad.
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Ni(110)

SIS beamline at SLS

X.. Cui et al, Phys Rev B 81 (201) 245118
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APRES from Cu(111)
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Analyzer

Angle

Figure 4.44 Data spanning different electron kinetic energies and trajectories can be
simultaneously recorded using a multichannel plate and CCD camera as the detector system
ina CHA.

P. Willmott, Intro to Synchr. Rad. Page 31
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ARPES beamline

Scienta
hemis;?hen'cal
analyzer
,F:,I#r';; Undulator
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Spherical
Ey = — Photoelectrons o Enlrror
Detector
. Plane
ratings
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Sample mirror Exit slit Scan
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Spin-resolved ARPES at COPHEE

Courtesy Hugo Dil
Results:

+» Topological insulators: first ever verification of spin-momentum locking of surface state.
Bi2Ses, Bi2Tes, PbBisTez, TIBiSez, Bi(114), a-Sn, TClI, thin films, ...

* Spin structure of SmBe as topological Kondo insulator
» Rashba systems: quantum well states, 2D, 1D, spin-orbit density wave

+ Bulk Rashba systems: measurement of 3D Fermi surface and spin structure (BiTel,

BiTeCl, GeTe ...) 1.0x10* P "
~ 084 7o -
* 2DEG on transition metal oxides (e.g. SrTiOs . 29: N
-combination of Rashba and magnetism 2 2;;: !‘( ]
-influence of ferroelectricity on spin structure? o.-
0.57 d » r
Capabilities: oy "‘a
* Spin vector in 3D for any point in k- < oo F
space e o
+ Use photon-energy and - i )
polarisation to study correlation s oo @k
effects & 01d T | —
* Resonant effects (“XMCD above ooz )
Curie”, singlet-triplet distinction) 03 FE PRI et SrTiO3(001)
+ In-situ sample preparation kg B
Managed by Hugo Dil (EPFL and PSI)
Soft-X-Ray ARPES
S— S S . sample I vacuum
|
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S F T E
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« Larger mean free path increases probing depth (main signal still from surface region)

+ Increased damping distance enhances k. resolution (Ak.=2""): large problem at low hv

= High Kinetic energies mean final state feels less of crystal potential: more free electron-like
— Simplified matrix element and “cleaner” spectrum

Price to pay: less good resolution (40meV vs. 4meV) and lower count rate

ADRESS beamline at SLS
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High Energies: Soft-X-Ray ARPES
Band structure of GaAs through amorphous As layer

M. Kobayashi et al (SLS); samples: Uni Tokyo

hv
amorphous As 5-10A
~ o large A required: Soft-X-ray ARPES
GaAs

hv=287¢V hv =453 eV hv=2892 ¢V

’ Angle (deg) )

® acquisition time 3 min

e GaAs signal piles up with Ay

PAUL SCHERRER INSTITUT

NanoARPES

ST

s antare
Developments at: il _ .
Soleil, Advanced Light Source, Diamond "= BE g e espe

RERy
P v
Significant loss of photon flux due to zone plates y /‘/ = p 1__?_"1 S (\
f2) ¢ '.rv:“"“"'
PF A

Trder Sarting

Typical 100 pm spot  semweloss - o a

nano 200 nm spot

Different orientational domains of
graphite are easily resolved
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Aim of the lecture

Basic concepts of Photoemission spectroscopy

* How to probe the occupied states

* Einstein and the Photoelectric effect

* Photoemission process

* XPS, X-ray photoelectron spectroscopy

* Comparison XAS and XPS

* ARPES, Angle resolved Photoemission Spectroscopy
[- Ambient pressure XPS

* XPD, X-ray Photoelectron Diffraction
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Ambient pressure XPS

Nerays !nlg'r cell at 55°
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Liquid jet XPS

liquid microjet

two-dimensional

.~ MCP detector jet diameter 15
.5cm
35 um
1.?"?:(:0,,
= Nalyze, I
rer W
«— catcher
" p=pre-lens catcher

Soon at NanoXAS beamline at SLS

— 600 um

M.A. Brown et al, Rev. Sci. Instrum 84, (2013) 073904

Already used at SIM and PHOENIX beamline Page 39
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Aim of the lecture

Basic concepts of Photoemission spectroscopy

How to probe the occupied states

Einstein and the Photoelectric effect
Photoemission process

XPS, X-ray photoelectron spectroscopy

Comparison XAS and XPS

ARPES, Angle resolved Photoemission Spectroscopy
Ambient pressure XPS

XPD, X-ray Photoelectron Diffraction

Page 40
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X-ray Photoelectron Diffraction (XPD)

(a) (b)  forward (c)
rT\ scattering
i e i

4 scatterer ' ! e S

emitter ol

Figure 6.57 The scattering processes in x-ray photoelectron diffraction. (a) The oulgoing
wave of an ejected photoelectron can be either direct or be scattered elastically by neighbouyr-
ing atoms. (b) Scattering has a pronounced forward contribution for electrons with energies
of several hundred to several thousand eV. Towards the lower limit of this range (dashed
polar distribution), forward scattering is less pronounced than at higher electron energies
(solid line). (c) In a crystal, pronounced forward scattering has the effect that scattering along
high-symmetry crystal axes is therefore much enhanced.

PEARL beamline at SLS

P. Willmott, Intro to Synchr. Rad. Page 41
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X-ray Photoelectron Diffraction (XPD)

(b)

[143]

Figure 6.60 N s emission patterns for (a) D-cysteine and (b) L-cysteine. The patterns are
dominated by the features labelled Xpp and X, associated with forward scattering with the
central carbon atom nearly in plane. The two weaker features Y and Z are due to scattering
of the N 1s wave with the COOH carboxyl group. The absorption structures and orientations
of {c) D-cysteine and (d) L-cysteine, determined by XPD results and theoretical calculations.
Adapted from [61] with permission of the American Physical Society.

PEARL beamline at SLS page 42
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ARPES beamline

Scienta
hemispherical
analyzer

Entrance slit

: Toroidal
Sample mirror Exit slit

Plane
mirror

‘
(= 4-jaw
&. aperture
pherical
mirror
Plane
< gratings
Scan

Page 43

PAUL SCHERRER INSTITUT

ARPES, Advantages and Limitations

Advantages

* Direct information about
the electronic states!

» Straightforward comparison with
theory - little or no modeling.

« High-resolution information about
BOTH energy and momentum

- Surface-sensitive probe
= Sensitive to “many-body" effects

+ Can be applied to small samples
(100 um x 100 um x 10 nm)

Limitations

~10A { Surface Electrons

&

Bulk Electrons

Now SX-ARPES
* Not bulk sensitive

* Requires clean, atomically flat
surfaces in ultra-high vacuum

« Cannot be studied as a function of
pressure or magnetic field

Courtesy of Kyle Shen
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