A New Era of X-Ray Science:
Beyond one-photon-at-a-time

Joachim Stohr
SLAC/Stanford

http://www-ssrl.slac.stanford.edu/stohr

Science at FELs, PSI September 2014



Peak Brilliance [Photons/(s mrad” mm® 0.1% BW)]
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Synchrotron & X-FEL sources
are based on electron accelerators

J. Ullrich, A. Rudenko, R. Moshammer
Ann. Rev. Phys. Chem. 63, 635 (2012)




Toward the perfect x-ray source



Source brightness (or brilliance)

Peak brightness of a source
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If these conditions are satisfied, x-rays are completely coherent




Brightness, coherence & degeneracy parameter

Peak brightness of a source
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Field

Field

Field of “monochromatized” photon

The effect of increased monochromaticity

Field of a single photon - random phase
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Overview of x-ray source spectra

7 x-ray free electron laser
) v e ol
Brightness « (# electrons) 10
Cgeqfs i 300nm r
\ : P £
{ [ (/)] E — —~
- e 3 1010;! ——AE~1eV
E E
< 4
2
S
x 3
3 :
= 10° h
g L ¥ undulator
Brightness oc (# und. periods) % 3  AF~10 eV
o | x storage
: — 3cm i< e - .
(TR e : ring
N TR 1 L \ bending magnet
2 AE ~ 10 keV,A
0.1 1 10 100

Photon energy (keV)



Calculated X-FEL spectrum

(a) Electron ordering within a bunch in SASE process
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(b) Spontaneous and SASE spectrum of a long undulator
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Example: Photons within coherence volume

photons in beam coherence volume:
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Storage ring: n_,, <1 photon —— “one photon at a time”

X-Ray laser: n_,,~ 10° photons



Who needs peak brightness?

Three examples:

« Coherent Imaging
Laterally coherent (diffraction limited) photons

e Ultrafast Science
photons in ultrashort pulse

 Non-linear x-ray science
Laterally and longitudinally coherent photons



« Coherent Imaging
Laterally coherent (diffraction limited) photons



Importance of a “diffraction limited source”
or laterally coherent source

X-ray source (a) Braggq diffraction
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X-FEL x-rays are diffraction limited
allow single shot diffraction imaging

Storage ring:
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X-ray Free
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Entire beam
is coherent



The importance of resonant excitation
- magnetic nanostructure “speckles” only seen on resonance
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The importance of resonant excitation
- magnetic nanostructure “speckles” only seen on resonance
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e Ultrafast Science
photons in ultrashort pulse



The speed of things — the smaller the faster
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Characteristic speeds of atoms and electrons

e« Atoms : speed of sound: 1nm/1ps
e Electrons: Fermi velocity: lnm/1fs

e Light: speed of light: 1nm/3as




Learn from fast photography with visible light

Fastest camera has shutter speed of 0.2 ms

 hummingbird has blurry wings
e picture typically dark because exposure is too short



The trick to recording ultrafast pictures

light flash duration and intensity determines picture quality




The trick to recording ultrafast pictures

e Use a bright flash, faster than existing shutter speed

o Capture bright reflected light flash with camera
leave shutter open, flash light is stronger than background light

ultrafast flash
20 us

shutter speed
200 pus

light flash duration and intensity determines picture quality




Elements of nanoscale movies

o X-rays A
for atomic resolution

e ultrafast flash > X-FELs

to overcome camera speed problems

e ultrabright flash
to overcome intensity problem )

In structural biology, fast & intense pulses
beat atomic motion and damage




The arrangement for most ultrafast studies —
“pump-probe”

optical laser
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 Non-linear x-ray science
Laterally and longitudinally coherent photons



The goal is to control resonant transitions in x-region
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Molecules, Polymers: p-orbitals
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Rare Earths: f-orbitals
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Element specificity, Chemical specificity, Valence properties




X-ray response is simpler than optical response
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Tune to absorption resonance — strong transitions
Soft x-ray resonant cross sections similar to

first experiments:
Rohringer et al, Nature, 481, 488 (2012), Beye et al. Nature, 501, 191 (2013)
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X-Rays in versus x-rays out: the soft x-ray problem
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Auger decay completely dominates

X-ray decay very weak



Excited state decay times for important elements

Auger lifetime t, (fs)
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In soft x-ray region Auger decay completely dominates (is faster)

- It occurs on fs timescale

- X-ray emission is much slower
- this is a problem for resonant inelastic x-ray scattering (RIXS)




How can we get more photons out ?
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When the incident field becomes stronger than the zero-point field
stimulated decays begin to dominate over spontaneous decays




Stimulation requires many photons in the coherence volume

Stimulated resonant process in equilibrium

(a) Photon picture (b) Single EM-wave picture
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More than one photon at-a-time strong classical field

offers complete “up-down” control




Want transform limited X-FEL pulse — single spike

Typical soft x-ray FEL pulse
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Population and transition rates of atoms
as function of incident intensity
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Light revolutions

Light Bulb

Synchrotron

Radiation A-ray Free

Electron Laser
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The end
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