Shifter and Docker SLURM Integration

Jean-Baptiste Aubort, Gilles Fourestey, Vittoria Rezzonico, Ricardo Silva

EPFL - SCITAS

October 27, 2017

SCITAS

- manage HPC clusters at EPFL
- since 2013 is it's current form
 - bringing together systems and applications specialists
 - providing real end-to-end support
- besides HPC, provide other services to support research in general
 - training: not only on the use of the clusters but also other areas, for example data management
 - code hosting and CI: https://c4science.ch
- prepare for future trends: accelerators, ML

Hardware

- >28k cores spread across 4 clusters
- ullet \sim 1 cluster per year, 4 year typical lifetime
- classical HPC configuration
 - InfiniBand network
 - dedicated /scratch filesystem (GPFS)
- 3 PB shared storage (GPFS)
- scheduler: Slurm

Three main dimensions

Code

- Code
 - version control + https://c4science.ch

- Code
 - version control + https://c4science.ch
- Software

- Code
 - version control + https://c4science.ch
- Software
 - https://spack.readthedocs.io/ + automation
 but not everything is packaged and is not as decoupled as we (and our users) would like from the OS

- Code
 - version control + https://c4science.ch
- Software
 - https://spack.readthedocs.io/ + automation
 but not everything is packaged and is not as decoupled as we (and our users) would like from the OS
- Data

- Code
 - version control + https://c4science.ch
- Software
 - https://spack.readthedocs.io/ + automation
 but not everything is packaged and is not as decoupled as we (and our users) would like from the OS
- Data
 - to be continued...

If reproducibility sits at one end of the *change* velocity spectrum. Why doesn't my job run anymore? It worked perfectly back in 2004!

If reproducibility sits at one end of the *change* velocity spectrum. Why doesn't my job run anymore? It worked perfectly back in 2004!

We change too often!

If reproducibility sits at one end of the *change* velocity spectrum. Why doesn't my job run anymore? It worked perfectly back in 2004!

We change too often!

The other recurring *complaint* is how *old* our software environment is. *Why isn't the latest version of X available/supported?*

If reproducibility sits at one end of the *change* velocity spectrum. Why doesn't my job run anymore? It worked perfectly back in 2004!

We change too often!

The other recurring *complaint* is how *old* our software environment is. Why isn't the latest version of X available/supported?

We don't change often enough!

An approach:

Containers!

A few options have popped up in the last couple of years which integrate *containers* with a classical HPC schedulers:

NERSC: Shifter

LBL: Singularity

LANL: CharlieCloud

Univa: Grid Engine CE

A few options have popped up in the last couple of years which integrate *containers* with a classical HPC schedulers:

- NERSC: Shifter
- LBL: Singularity
- LANL: CharlieCloud
- Univa: Grid Engine CE uses Docker and UGE

A few options have popped up in the last couple of years which integrate *containers* with a classical HPC schedulers:

- NERSC: Shifter
- LBL: Singularity
- LANL: CharlieCloud only just popped on our radar
- Univa: Grid Engine CE uses Docker and UGE

A few options have popped up in the last couple of years which integrate *containers* with a classical HPC schedulers:

- NERSC: Shifter
- LBL: Singularity uses tar balls
- LANL: CharlieCloud only just popped on our radar
- Univa: Grid Engine CE uses Docker and UGE

There are three parts to deploying shifter: the Image Gateway, the Shifter Runtime and the integration with Slurm:

There are three parts to deploying shifter: the Image Gateway, the Shifter Runtime and the integration with Slurm:

Image Gateway

- built the RPM from the repository
- on a node with access to the shared storage, but not necessarily part of the Slurm cluster
- the only machine that needs the Docker tools installed
- we did it with Puppet, along with it's dependencies: Redis and MongoDB
- most of the work was to figure out a consistent set of versions of Python modules

There are three parts to deploying shifter: the Image Gateway, the Shifter Runtime and the integration with Slurm:

Shifter Runtime

- built the RPM from the repository
- installed on the login and worker nodes

There are three parts to deploying shifter: the Image Gateway, the Shifter Runtime and the integration with Slurm:

Shifter Runtime

- built the RPM from the repository
- installed on the login and worker nodes

Slurm integration

 one configuration line in /etc/slurm/plugstack.conf: optional /usr/lib64/shifter/shifter_slurm.so shifter_config=/etc/shifter/udiRoot.conf

Shifter: Configuration

One main configuration file:

/etc/shifter/udiRoot.conf

- paths to tools and working directories
- URL of the Image Gateway
- Local filesystems that will be mounted

How to use it: running jobs

Compiled executables

Compile your application with the same docker image you are planning to run it.

Prerequisites

Docker images mount */home* directories when launched via SLURM.

Example: running Hello world

 We will use the debian:latest image on Dockerhub: shifterimg pull debian:latest

```
#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=1

#SBATCH --image=debian:latest

srun shifter echo "Hello, world!"
```

submit the job with

sbatch hello.slurm

Example: MPI jobs

- We will use the rezzonic/spack-mpich image on Dockerhub: shifterimg pull rezzonic/spack-mpich
- It contains mpich installed via *spack*.
- We will need a helper file to compile our application:

```
#!/bin/bash

source /spack/share/spack/setup-env.sh
module avail
module load mpich

mpicc hello.c -o hello.exe
```


Example: MPI jobs

We can now create the compilation job

```
#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=1

#SBATCH --image=rezzonic/spack-mpich

srun shifter ./prepare-mpich.sh
```

and submit the compilation with sbatch prepare-mpich.slurm

Example: MPI jobs

We are ready to run our MPI application:

```
#!/bin/bash

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=1

#SBATCH --image=rezzonic/spack-mpich

srun --mpi=pmi2 shifter ./hello.exe
```

with

sbatch run-mpich.slurm

Shifter: what next?

- Put it in production in our more recent cluster
 - test the more recent release of Shifter
 - solve a couple of small operational issues (ex: /etc/passwd + LDAP)
- profit from the recent contributions to shifter regarding GPUs and MPI
- create a few reference containers we support, with software built as we build it in our clusters
- test popular upstream containers
- private registries for our users

Thank you! Questions?

