

# Coherent spin and lattice dynamics studied with femtosecond x-ray diffraction

Steve Johnson

ETH Zurich







- Why x-rays?
- Principles of scattering and diffraction
- Sources of short x-ray pulses
- Time-resolved scattering
- Time-resolved diffraction

### Why x-rays?

#### ΕTH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

# X-ray region of spectrum





- Wavelength: 0.1-100 Å
- Photon energy: 100 eV 100 keV

#### ЯH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

# X-ray region of spectrum



- Wavelength: 0.1-100 Å
- Photon energy: 100 eV 100 keV

### X-ray scattering / diffraction

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



- Use interference of scattered radiation to infer electronic charge distribution, atomic structure
- Measure "cuts" of Fourier Transform space



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

# **Ultrafast + scattering / diffraction**

# **Vibrational dynamics**



- Speed of sound (condensed media) ~ 2000 m / s
- Typical interatomic spacing ~ 1 Å
- $\Delta t \sim (1 \times 10^{-10} \text{ m})/(2000 \text{ m/s}) = 50 \text{ fs}$

(tomorrow: spin and valence dynamics)

## Principles of scattering and diffraction

### Interactions: EM radiation & matter

 Hamiltonian for a free particle with mass m and charge q (non-relativistic)



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### Interactions: EM radiation & matter

- Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich
  - Per atom elastic scattering weak, ~ 10<sup>-26</sup> m<sup>2</sup>
  - Typically weaker than incoherent contributions...but maintains phase coherence



J. H. Hubbell, H. A. Gimm, I., "Pair, Triplet, and Total Atomic Cross Sections (and Mass Attenuation Coefficients) for 1 MeV–100 GeV Photons in Elements Z = 1 to 100," J. Phys. Chem. Ref. Data 9, 1023 (1980).



- To use interference as a probe, coherence essential
- What is coherence?

$$\mu(\mathbf{r}_1, \mathbf{r}_2) = \frac{\langle E(\mathbf{r}_1, t) E(\mathbf{r}_2, t)^* \rangle}{\sqrt{\langle |E(\mathbf{r}_1, t)|^2 \rangle \langle |E(\mathbf{r}_2, t)|^2 \rangle}}$$

Spatial coherence: "Complex coherence factor"

"Incoherent" "Coherent"  $\mu \to 0 \qquad \qquad \mu \to 1$ 

Ability of waves at different locations to interfere



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

$$\mu(\mathbf{r}_1, \mathbf{r}_2) = \frac{\langle E(\mathbf{r}_1, t) E(\mathbf{r}_2, t)^* \rangle}{\sqrt{\langle |E(\mathbf{r}_1, t)|^2 \rangle \langle |E(\mathbf{r}_2, t)|^2 \rangle}}$$

- Coherence volume: volume of space such that  $|\mu(0,{\bf r})|>1/2$
- Usually divided into "longitudinal" and "transverse"



(d is an apparent source size)



### **Coherence and order**

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



Source coherence volume



- Coherence volume small compared with illuminated sample volume
- Coherence volume large compared to interatomic spacings



Look at the *average* distances between atoms within the coherence volume dimensions

Swiss Federal Institute of Technology Zurich



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### **Structure factor**



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### **Diffuse scattering**

• How to get structure? (assume orientational disorder)

$$S(Q) = \sum_{k} N_{k} f_{k}(Q)^{2} \sum_{l \neq k} N_{k} f_{k}(Q) N_{l} f_{l}(Q) \int 4\pi r^{2} \rho_{0}(g_{kl}(r) - 1) \frac{sin(Qr)}{Qr} dr$$

Pair correlation function



[example from: Hochgesand, Physica B 276-278, 425 (2000)]



Advantages:

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Given a structural model, easy to calculate diffraction
- Selective, only sensitive to structure
- Disadvantages:
  - Requires a model (not invertible)
  - Interaction with all electrons in sample (solvents)
  - In normal use, just the pair correlation function (no higher orders)



- For now, we discuss systems with true long-range order (no quasicrystals or incommensurate superlattices)
- Unit cell: arrangement of atoms (basis)
- Vectors t describe translational symmetry, can be used to "build" the crystal from a unit cell



$$\mathbf{t} = n\mathbf{a}_1 + m\mathbf{a}_2$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

T

$$\frac{I_s}{I_0} = |F(\mathbf{Q})|^2 \qquad F(\mathbf{Q}) = \sum_{\mathbf{R}} f_R e^{i\mathbf{Q}\cdot\mathbf{R}}$$
$$F(\mathbf{Q}) = \sum_{\mathbf{t}} \left(\sum_j f_j e^{i\mathbf{Q}\cdot\mathbf{r}_j}\right) e^{i\mathbf{Q}\cdot\mathbf{t}} = \sum_{\mathbf{t}} F_c(\mathbf{Q}) e^{i\mathbf{Q}}$$

٠t



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

$$\frac{I_s}{I_0} = |F(\mathbf{Q})|^2 \qquad \qquad F(\mathbf{Q}) = \sum_{\mathbf{t}} F_c(\mathbf{Q}) e^{i\mathbf{Q}\cdot\mathbf{t}}$$

• For a large crystal (many unit cells), strong peaks when

 $\mathbf{Q} \cdot \mathbf{t}/2\pi \in I$ 

 We call values of Q that satisfy this for all t reciprocal lattice vectors G

$$\mathbf{G} = h\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3$$

h, k, l integers; b<sub>1</sub>, b<sub>2</sub>, b<sub>3</sub> reciprocal primitive vectors

### **Reciprocal space**

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



Eidgenössische Technische Hochschule Zürich Diffraction: crystals

### **Reciprocal lattice**

Swiss Federal Institute of Technology Zurich



Lattice planes represented by G:  $\mathbf{G} = h\mathbf{b_1} + k\mathbf{b_2}$ ...where h, k are integers

Direction: orientation of plane

$$|\mathbf{G}| = 2\pi/d$$



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### **Ewald sphere (circle)**

...A graphical way to predict where in reciprocal space Bragg peaks appear

$$\mathbf{k}_f = \mathbf{k}_i + \mathbf{G}$$

Determined *only* by long range translational order





- Determining average structure from diffraction:
  - Find sets of Q that can lead to reflections
  - Practically, involves rotating crystal or changing x-ray wavelength to sweep the Ewald sphere around in reciprocal space





Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH





- Now we know the translational symmetry (shape of u.c.)
- For unit cell structure, need to measure |F<sub>c</sub>(G)|<sup>2</sup> for several reflections
- "Systematic absences": additional symmetries
- In principle, results in a system of nonlinear equations to solve
- Sometimes ambiguous, need tricks (e.g. anomalous diffraction, see tomorrow)

$$F_c(\mathbf{Q}) = \sum_j f_j e^{i\mathbf{Q}\cdot\mathbf{r}_j}$$
 Unit cell structure factor

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### Short pulse x-ray sources



Basic idea: very high energy fs ablation



Basic idea: very high energy fs ablation



#### High energy electrons sent into cold material



Core level ionization of atoms causes x-ray line emission; Bremsstrahlung radiation gives a continuum background





Laser-produced plasmas: properties

- Integrated flux: ~ 3 x 10<sup>8</sup>/pulse at Ti Kα line (10 Hz system)
- Collimation: none (emits in all directions)
- Brilliance: ~ 5 x 10<sup>4</sup> photons/mm<sup>2</sup>/mrad<sup>2</sup>/0.1% BW/ pulse
- Wavelength: Depends on target; most flux at atomic emission lines, but there is a continuum background esp. for high Z targets
- Pulse duration: ~300 fs (set by plasma dynamics)
- Rep rate: 10-1000 Hz (depends on laser)
- Stability: not formally characterized, but very sensitive to laser



#### **Synchrotron radiation** Swiss Federal Institute of Technology Zurich



#### Light from accelerated relativistic electrons

Good ref with more math: K.-J. Kim, Nucl. Instrum. Methods Phys. Res. A246, 71 (1986)

[Als-Nielsen & McMorrow, Elements of Modern X-ray Physics, John Wiley & Sons, Ltd, 2001]

**Synchrotron radiation** 

### Insertion devices: more bends for more light



[Als-Nielsen & McMorrow, Elements of Modern X-ray Physics, John Wiley & Sons, Ltd, 2001]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



**Synchrotron radiation** 

### Insertion devices: more bends for more light



**Synchrotron radiation** 

### **Time structure of synchrotron X-rays**





- Electrons in bunches, spacing ~ 2 ns
- Stability of electron beam (e-e scattering) requires
  ~ 100 ps long bunches
- For femtosecond x-rays, create a transient short bunch...







#### 1. Modulation

2. Separation

3. Radiation







#### 1. Modulation

2. Separation

3. Radiation







- E-field of laser transverse to direction of propagation
- Efficient energy exchange requires transverse component of electron momentum ... undulator!



- E-field of laser transverse to direction of propagation
- Efficient energy exchange requires transverse component of electron momentum ... undulator!







# $dE/dt = \mathbf{F} \cdot \mathbf{v} \ge 0$







# $dE/dt = \mathbf{F} \cdot \mathbf{v} \le 0$













#### 1. Modulation

2. Separation

3. Radiation

**Free electron laser** 

# Like slicing, but long undulator $\rightarrow$ positive feedback $\rightarrow$ microbunching



Initial facilities (LCLS, SwissFEL, EU-XFEL, ...) seeded by noise

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



Spontaneous



Superradiant



 $E = N E_1$  $P = N P_1$  $P = N^2 P_1$ *N* ≈ 10<sup>9</sup>

= - - -

Swiss Federal Institute of Technology Zurich



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



Result: coherent, bright, short (< 10 fs) x-ray pulses



- Photons per pulse: ~10<sup>12</sup>
- Wavelength: ~ 1-100 Å
- Pulse duration: ~ 10-100 fs (shorter "spikes")
- Rep rate: highly variable, from ~ 10 Hz to ~ 1 MHz "bursts"
- Collimation: ~ 1-10 µrad divergence
- Brilliance: ~ 10<sup>20</sup> ph/mrad<sup>2</sup>/mm2/0.1% BW/pulse
- Spatially coherent
- Stability poor (so far)

(recall:  $\sim 10^5$  for plasma source!!)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### **Time-resolved diffraction**

### "Indirect" control:

### **Electronically induced symmetry changes**

# Idea: driving symmetry changes

- Electronic excitation changes free energy surface for ions
- What if new surface has a different (lower) symmetry?

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich









- Quasi 1D Peierls system
- Below 180 K incommensurate superlattice
- Optical excitation excites coherent phonons related to transition

e.g.: H. Schäfer et al. PRL 105, 066402 (2010)



[Tsai et al. Appl. Phys.Lett. 91, 022109 (2007)]

# Experiment team: K<sub>0.3</sub>MnO<sub>3</sub>

#### ETHZ:

#### A. T. Huber

- A. Ferrer T. Kubacka
- L. Huber
- C. Dornes
- V. Scagnoli

### EPFL/ETHZ:

#### A. Luebke

- U. Konstanz:
- H. Schäfer
- T. U. Ilmenau:
- J. Demsar





- J. Johnson
- G. Ingold
- S. Mariager
- S. Gruebel
- P. Beaud





Swiss National Science Foundation

# **Dynamics of incommensurate modulation**

 Low fluence: coherent phonon in low-symmetry potential

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- High fluence: symmetry change
- Anomalous damping



[A. T. Huber et al. PRL 113, 026401 (2014)]



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### **Dynamics of incommensurate modulation**

$$V(x) = \frac{1}{2} \left( \eta \exp\left(-\frac{t}{\tau_{\text{disp}}}\right) - 1 \right) x^2 + \frac{1}{4}x^4$$

- Time-dependent potential surface, relaxes as electrons equilibrate with lattice
- Time-dependent
  damping rate

$$\frac{1}{\omega_{\rm DW}^2} \frac{\partial^2}{\partial t^2} x - \left(1 - \eta \exp\left(-\frac{t}{\tau_{\rm disp}}\right)\right) x + x^3 + \frac{2\gamma(t)}{\omega_{\rm DW}^2} \frac{\partial}{\partial t} x = 0 \gamma(t) = \gamma_{\rm asym} \left(1 - e^{-t/\tau_{\gamma}}\right)^2$$

[A. T. Huber et al. PRL 113, 026401 (2014)]



### "Direct" control:

# Spin dynamics of a large-amplitude coherent electromagnon



(b)

Eidgenössische Technische Hochschule Züric Swiss Federal Institute of Technology Zurich

# THz excitation: path to fast control of multiferroics?



[Y. Takahashi et al., PRL 101, 187201 (2008)]



[Mochizuki & Nagaosa, PRL 105, 147202 (2010)]

### **Experiment concept**



Pump electromagnon with THz, watch spins with resonant x-ray diffraction

## X-ray pulses: probe spin order



$$\left\langle \mathbf{T}_{q}^{k} \right\rangle \propto \sum_{n} \frac{\left\langle g \right| O \left| n \right\rangle \left\langle n \right| O^{*} \left| g \right\rangle}{E_{n} - E_{g} - \hbar \omega + i \Gamma}$$

- Experiment at LCLS
- Pulses of < 80 fs duration</li>
- Time-stamping for < 250 fs resolution</li>

 (0q0) reflection at Mn L-edges: only magnetic order



[Beye et al. Appl. Phys. Lett. 100, 121108 (2012)]

# **Experiment team: TbMnO**<sub>3</sub>

#### ETHZ: LBNL: T. Kubacka Y.-D. Chuang L. Huber V. Scagnoli Stanford: **SLAC:** W.-S. Lee R. G. Moore M. Hoffmann S. de Jong J. Turner **Johns Hopkins:** W. Schlotter G. Dakovski S. M. Koohpayeh PAUL SCHERRER INSTITUT



**U.Staub** 

- S.-W. Huang J. Johnson C. Vicario G. Ingold
- Ch. Hauri S. Gruebel P. Beaud L. Patthey

must







### **Results: coherent electromagnon**

- E-field of THz → coherent spin response
- Measured spin response delayed by half cycle
- Response suppressed in nonmultiferroic phase





[T. Kubacka et al., Science 343, 1333 (2014)]



# Analyzing the motion





 Blue bronze: timedependent free energy + damping





- TbMnO<sub>3</sub>: Direct excitation of coherent electromagnon
  - See actual spin motions
  - Outlook: switching?

Swiss Federal Institute of Technology Zurich

## **ESB** station at SwissFEL





- Hard x-ray (4-12.4 keV)
- Time resolution to 10 fs
- Optimized THz pumping
- Support for low-T, high-B





[G. Ingold, P. Beaud]