Coherent spin and lattice dynamics studied with femtosecond x-ray diffraction

Steve Johnson

ETH Zurich

Outline

- Why x-rays?
- Principles of scattering and diffraction
- Sources of short x-ray pulses
- Time-resolved scattering
- Time-resolved diffraction
idgenössische Technische Hochschule Zürich swiss Federal Institute of Technology Zurich

Why x-rays?

X-ray region of spectrum

- Wavelength: 0.1-100 \AA
- Photon energy: 100 eV - 100 keV

X-ray region of spectrum

- Wavelength: 0.1-100 \AA
- Photon energy: $100 \mathrm{eV}-100 \mathrm{keV}$

X-ray scattering / diffraction

- Use interference of scattered radiation to infer electronic charge distribution, atomic structure
- Measure "cuts" of Fourier Transform space

Ultrafast + scattering / diffraction

Vibrational dynamics

- Speed of sound (condensed media) ~ $2000 \mathrm{~m} / \mathrm{s}$
- Typical interatomic spacing $\sim 1 \AA$
- $\Delta \mathrm{t} \sim\left(1 \times 10^{-10} \mathrm{~m}\right) /(2000 \mathrm{~m} / \mathrm{s})=50 \mathrm{fs}$
(tomorrow: spin and valence dynamics)

Eidgenōssische Technische Hochschule Zürich

Principles of scattering and diffraction

Interactions: EM radiation \& matter

- Hamiltonian for a free particle with mass m and charge q (non-relativistic)

$$
H=\frac{|\mathbf{P}-q \mathbf{A} / c|^{2}}{2 m}=\stackrel{|\mathbf{P}|^{2}}{2 m}+\frac{q}{\frac{q}{m c}(\mathbf{A} \cdot \mathbf{P}+\mathbf{P} \cdot \mathbf{A})+\frac{q^{2}|\mathbf{A}|^{2}}{2 m c^{2}}}
$$

$$
\mathbf{A}=\hat{\epsilon} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left(a_{k}^{\dagger} e^{-i \mathbf{k} \cdot \mathbf{r}}+a_{k} e^{i \mathbf{k} \cdot \mathbf{r}}\right)
$$

Interactions: EM radiation \& matter

- Per atom elastic scattering weak, $\sim 10^{-26} \mathrm{~m}^{2}$
- Typically weaker than incoherent contributions...but maintains phase coherence

Carbon atom

J. H. Hubbell, H. A. Gimm, I. , "Pair, Triplet, and Total Atomic Cross Sections (and Mass Attenuation Coefficients) for $1 \mathrm{MeV}-100 \mathrm{GeV}$ Photons in Elements Z = 1 to 100," J. Phys. Chem. Ref. Data 9, 1023 (1980).

- To use interference as a probe, coherence essential
- What is coherence?

$$
\mu\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{\left\langle E\left(\mathbf{r}_{1}, t\right) E\left(\mathbf{r}_{2}, t\right)^{*}\right\rangle}{\sqrt{\left.\left.\left.\langle | E\left(\mathbf{r}_{1}, t\right)\right|^{2}\right\rangle\left.\langle | E\left(\mathbf{r}_{2}, t\right)\right|^{2}\right\rangle}}
$$

Spatial coherence: "Complex coherence factor"

$$
\begin{gathered}
\text { "Incoherent" } \\
\mu \rightarrow 0
\end{gathered}
$$

"Coherent"
$\mu \rightarrow 1$

Ability of waves at different locations to interfere

Coherence

$$
\mu\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{\left\langle E\left(\mathbf{r}_{1}, t\right) E\left(\mathbf{r}_{2}, t\right)^{*}\right\rangle}{\sqrt{\left.\left.\left.\langle | E\left(\mathbf{r}_{1}, t\right)\right|^{2}\right\rangle\left.\langle | E\left(\mathbf{r}_{2}, t\right)\right|^{2}\right\rangle}}
$$

- Coherence volume: volume of space such that

$$
|\mu(0, \mathbf{r})|>1 / 2
$$

- Usually divided into "longitudinal" and "transverse"

(d is an apparent source size)

Coherence and order

Source coherence volume

Diffuse scattering

- Coherence volume small compared with illuminated sample volume
- Coherence volume large compared to interatomic spacings

Look at the average distances between atoms
within the coherence
volume dimensions

Diffuse scattering

Structure factor

$F(Q)=\sum_{j} f_{j} e^{i \mathbf{Q} \cdot \tau_{j}}$
... a Fourier transform

$$
\frac{I_{s}}{I_{0}}=|F(\mathbf{Q})|^{2}
$$

Diffuse scattering

- How to get structure?
(assume orientational disorder)

$$
S(Q)=\sum_{k} N_{k} f_{k}(Q)^{2} \sum_{l \neq k} N_{k} f_{k}(Q) N_{l} f_{l}(Q) \int 4 \pi r^{2} \rho_{0}\left(g_{k l}(r)-1\right) \frac{\sin (Q r)}{Q r}
$$

Pair correlation function
liquid $\mathrm{K}-\mathrm{Bi}$

[example from: Hochgesand, Physica B 276-278, 425 (2000)]

- Advantages:
- Given a structural model, easy to calculate diffraction
- Selective, only sensitive to structure
- Disadvantages:
- Requires a model (not invertible)
- Interaction with all electrons in sample (solvents)
- In normal use, just the pair correlation function (no higher orders)

ETH
 Diffraction: crystals

- For now, we discuss systems with true long-range order (no quasicrystals or incommensurate superlattices)
- Unit cell: arrangement of atoms (basis)
- Vectors t describe translational symmetry, can be used to "build" the crystal from a unit cell

$\mathbf{t}=n \mathbf{a}_{1}+m \mathbf{a}_{2}$

Diffraction: crystals

$$
\begin{gathered}
\frac{I_{s}}{I_{0}}=|F(\mathbf{Q})|^{2} \quad F(\mathbf{Q})=\sum_{\mathbf{R}} f_{R} e^{i \mathbf{Q} \cdot \mathbf{R}} \\
F(\mathbf{Q})=\sum_{\mathbf{t}}\left(\sum_{j} f_{j} e^{i \mathbf{Q} \cdot \mathbf{r}_{j}}\right) e^{i \mathbf{Q} \cdot \mathbf{t}}=\sum_{\mathbf{t}} F_{c}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{t}}
\end{gathered}
$$

$$
F_{c}(\mathbf{Q})=\sum_{j} f_{j} e^{i \mathbf{Q} \cdot \mathbf{r}_{j}} \text { Unit cell structure factor }
$$

Diffraction: crystals

$$
\frac{I_{s}}{I_{0}}=|F(\mathbf{Q})|^{2}
$$

$$
F(\mathbf{Q})=\sum_{\mathbf{t}} F_{c}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{t}}
$$

- For a large crystal (many unit cells), strong peaks when

$$
\mathbf{Q} \cdot \mathbf{t} / 2 \pi \in I
$$

- We call values of \mathbf{Q} that satisfy this for all \mathbf{t} reciprocal lattice vectors \mathbf{G}

$$
\mathbf{G}=h \mathbf{b}_{1}+k \mathbf{b}_{2}+l \mathbf{b}_{3}
$$

h, k, l integers; b_{1}, b_{2}, b_{3} reciprocal primitive vectors

Diffraction: crystals

Reciprocal space

2D case (easily generalized)
Direct space

$\mathbf{a}_{i}=\sum_{j} a_{i j} \mathbf{x}_{j}$

Reciprocal space

$\mathbf{b}_{i}=\sum_{j} b_{i j} \mathbf{x}_{j}$

$$
\left[\begin{array}{ll}
b_{11} & b_{21} \\
b_{21} & b_{22}
\end{array}\right]=\left(2 \pi\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{21} & a_{22}
\end{array}\right]^{-1}\right)^{T}
$$

Reciprocal lattice

Lattice planes represented by G :
Reciprocal space

$$
\mathbf{G}=h \mathbf{b}_{\mathbf{1}}+k \mathbf{b}_{\mathbf{2}}
$$

...where h, k are integers

Direction: orientation of plane

$$
|\mathbf{G}|=2 \pi / d
$$

Diffraction: crystals

Ewald sphere (circle)

...A graphical way to predict where in reciprocal space
Bragg peaks appear

$$
\mathbf{k}_{f}=\mathbf{k}_{i}+\mathbf{G}
$$

Determined only by long range translational order

ETH
 Diffraction: crystals

- Determining average structure from diffraction:
- Find sets of Q that can lead to reflections
- Practically, involves rotating crystal or changing x-ray wavelength to sweep the Ewald sphere around in reciprocal space

Diffraction: crystals

ETH
 Diffraction: crystals

- Now we know the translational symmetry (shape of u.c.)
- For unit cell structure, need to measure $\left|\mathrm{F}_{\mathrm{c}}(\mathbf{G})\right|^{2}$ for several reflections
- "Systematic absences": additional symmetries
- In principle, results in a system of nonlinear equations to solve
- Sometimes ambiguous, need tricks (e.g. anomalous diffraction, see tomorrow)

$$
F_{c}(\mathbf{Q})=\sum_{j} f_{j} e^{i \mathbf{Q} \cdot \mathbf{r}_{j}} \text { Unit cell structure factor }
$$

Eidgenōssische Technische Hochschule Zürich

Short pulse x-ray sources

Overview of fs x-ray sources

Plasma

HHG

[Phuoc, et al. Phys. Plasmas 12, 023101 (2005)]
"Plasma-wiggler"

Accelerator-based

Zholents and Zoblorev. Phins Rev. Left, 76, 916, 1996.

ERL

XFEL

Slicing

Laser-produced plasmas

Basic idea: very high energy fs ablation

Eidgenōssische Technische Hochschule Zürich

Laser-produced plasmas

Basic idea: very high energy fs ablation

Laser-produced plasmas

High energy electrons sent into cold material

Laser-produced plasmas

Core level ionization of atoms causes x-ray line emission; Bremsstrahlung radiation gives a continuum background

Laser-produced plasmas: properties

- Integrated flux: $\sim 3 \times 10^{8 / p u l s e}$ at Ti Ka line (10 Hz system)
- Collimation: none (emits in all directions)
- Brilliance: $\sim 5 \times 10^{4}$ photons $/ \mathrm{mm}^{2} / \mathrm{mrad}^{2} / 0.1 \% \mathrm{BW} /$ pulse
- Wavelength: Depends on target; most flux at atomic emission lines, but there is a continuum background esp. for high Z targets
- Pulse duration: ~300 fs (set by plasma dynamics)
- Rep rate: $10-1000 \mathrm{~Hz}$ (depends on laser)
- Stability: not formally characterized, but very sensitive to laser

Synchrotron radiation

Light from accelerated relativistic electrons

Good ref with more math: K.-J. Kim, Nucl. Instrum. Methods Phys. Res. A246, 71 (1986)
[Als-Nielsen \& McMorrow, Elements of Modern X-ray Physics, John Wiley \& Sons, Ltd, 2001]

Synchrotron radiation

Insertion devices: more bends for more light

[Als-Nielsen \& McMorrow, Elements of Modern X-ray Physics, John Wiley \& Sons, Ltd, 2001]

Synchrotron radiation

Insertion devices: more bends for more light

Synchrotron radiation

Time structure of synchrotron X-rays

- Electrons in bunches, spacing ~ 2 ns
- Stability of electron beam (e-e scattering) requires ~ 100 ps long bunches
- For femtosecond x-rays, create a transient short bunch...

Slicing

Wiggler

1. Modulation

Dispersive element(s)
(e.g. bend magnets)

2. Separation

Undulator

3. Radiation

Slicing

Wiggler

1. Modulation

Dispersive element(s)
(e.g. bend magnets)

2. Separation

Undulator

3. Radiation

- E-field of laser transverse to direction of propagation
- Efficient energy exchange requires transverse component of electron momentum ... undulator!

Slicing

- E-field of laser transverse to direction of propagation
- Efficient energy exchange requires transverse component of electron momentum ... undulator!

Eidgenōssische Technische Hochschule Zürich

Slicing

$d E / d t=\mathbf{F} \cdot \mathbf{v} \geq 0$

Eidgenōssische Technische Hochschule Zürich

Slicing

$d E / d t=\mathbf{F} \cdot \mathbf{v} \leq 0$

Slicing

Wiggler

1. Modulation

Dispersive element(s)
(e.g. bend magnets)

2. Separation

Undulator

3. Radiation

Slicing

Wiggler

1. Modulation

Dispersive element(s)
(e.g. bend magnets)

Undulator

3. Radiation

Free electron laser

Like slicing, but long undulator \rightarrow positive feedback \rightarrow microbunching

[^0]
EHH
 Free electron laser

Spontaneous

Superradiant

$$
P=N P_{1}
$$

$$
\begin{aligned}
& E=N E_{1} \\
& P=N^{2} P_{1}
\end{aligned}
$$

$N \approx 10^{9}$

Free electron laser

Result: coherent, bright, short (<10 fs) x-ray pulses

- Photons per pulse: $\sim 10^{12}$
- Wavelength: ~ 1-100 A
- Pulse duration: ~ 10-100 fs (shorter "spikes")
- Rep rate: highly variable, from $\sim 10 \mathrm{~Hz}$ to $\sim 1 \mathrm{MHz}$ "bursts"
- Collimation: ~ 1-10 μ rad divergence
- Brilliance: ~ $10^{20} \mathrm{ph} / \mathrm{mrad}^{2} / \mathrm{mm} 2 / 0.1 \%$ BW/pulse
- Spatially coherent
- Stability poor (so far)

Eidgenōssische Technische Hochschule Zürich

Time-resolved diffraction

"Indirect" control:

Electronically induced symmetry changes

Idea: driving symmetry changes

- Electronic excitation changes free energy surface for ions
- What if new surface has a different (lower) symmetry?

[Zijlstra, Tatarinova \& Garcia, PRB 74, 220301 (2006)]

[Tsai et al. Appl. Phys.Lett. 91, 022109 (2007)]

Experiment team: $\mathrm{K}_{0.3} \mathrm{MnO}_{3}$

ETHZ:

A. T. Huber
A. Ferrer
T. Kubacka
L. Huber
C. Dornes
V. Scagnoli

EPFL/ETHZ:

A. Luebke

U. Konstanz:

H. Schäfer

T. U. Ilmenau:

J. Demsar

PAUL SCHERRER INSTITUT

J. Johnson
G. Ingold
S. Mariager
S. Gruebel
P. Beaud

FNSNF

Swiss National Science Foundation

Dynamics of incommensurate modulation

- Low fluence: coherent phonon in low-symmetry potential
- High fluence: symmetry change
- Anomalous damping

[A. T. Huber et al. PRL 113, 026401 (2014)]

Dynamics of incommensurate modulation

$$
V(x)=\frac{1}{2}\left(\eta \exp \left(-\frac{t}{\tau_{\text {disp }}}\right)-1\right) x^{2}+\frac{1}{4} x^{4}
$$

- Time-dependent potential surface, relaxes as electrons equilibrate with lattice
- Time-dependent damping rate

$$
\begin{aligned}
\frac{1}{\omega_{\mathrm{DW}}^{2}} \frac{\partial^{2}}{\partial t^{2}} x & -\left(1-\eta \exp \left(-\frac{t}{\tau_{\text {disp }}}\right)\right) x+x^{3} \\
& +\frac{2 \gamma(t)}{\omega_{\mathrm{DW}}^{2}} \frac{\partial}{\partial t} x=0 \\
\gamma(t) & =\gamma_{\text {asym }}\left(1-e^{-t / \tau_{\gamma}}\right)^{2}
\end{aligned}
$$

[A. T. Huber et al. PRL 113, 026401 (2014)]

[Pouget et al. PRB 43, 8421 (1991)]

"Direct" control:

Spin dynamics of a large-amplitude coherent electromagnon

THz excitation: path to fast control of multiferroics?

TbMnO_{3}

[Y. Takahashi et al., PRL 101, 187201 (2008)]

[Mochizuki \& Nagaosa, PRL 105, 147202 (2010)]

Experiment concept

Pump electromagnon with THz, watch spins with resonant x-ray diffraction

X-ray pulses: probe spin order

$$
\left\langle\mathbf{T}_{q}^{k}\right\rangle \propto \sum_{n} \frac{\langle g| O|n\rangle\langle n| O^{*}|g\rangle}{E_{n}-E_{g}-\hbar \omega+i \Gamma}
$$

- Experiment at LCLS
- Pulses of $<80 \mathrm{fs}$ duration
- Time-stamping for < 250 fs resolution
[Beye et al. Appl. Phys. Lett. 100, 121108 (2012)]

Experiment team: TbMnO_{3}

ETHZ:
SLAC:
M. Hoffmann
S. de Jong
J. Turner
W. Schlotter
G. Dakovski

LBNL:
Y.-D. Chuang

Stanford:
W.-S. Lee
R. G. Moore

PAUL SCHERRER INSTITUT

U.Staub
S.-W. Huang
J. Johnson
C. Vicario
G. Ingold

Ch. Hauri
S. Gruebel
P. Beaud
L. Patthey

FNSNF

Swiss National Science Foundation

Results: coherent electromagnon

- E-field of THz \rightarrow coherent spin response
- Measured spin response delayed by half cycle
- Response suppressed in nonmultiferroic phase

[T. Kubacka et al., Science 343, 1333 (2014)]

Analyzing the motion

Odd function
[T. Kubacka et al., Science 343, 1333 (2014)]

Summary

- Blue bronze: timedependent free energy + damping

- TbMnO_{3} : Direct excitation of coherent electromagnon
- See actual spin motions
- Outlook: switching?

EHH

ESB station at SwissFEL

[G. Ingold, P. Beaud]

[^0]: Initial facilities (LCLS, SwissFEL, EU-XFEL, ...) seeded by noise

