The discovery of Dirac-cones in graphene and related compounds has promoted the search for magnetic Dirac materials. Candidates are the metal tri-halides CrBr$_{3}$ and CrI$_{3}$ which possess topological magnonic band structures [1,2].
Here we report the study of the magnetic ground-state and excitations in isostructural ErBr$_{3}$.
In this compound magnetic order with propagation vector...
The selection and switching of magnetic domains plays a key role in modern data storage and spintronics [1]. The selection of antiferromagnetic domains using magnetic fields is less straight-forward than for ferromagnetic domains, and often relies on the Zeeman interaction. Recently, another mechanism was proposed for tetragonal two-band metals featuring antiferromagnetic domains described by...
In recent years, artificial spin systems, consisting of elongated single-domain ferromagnetic nanomagnets placed on the nodes of two-dimensional lattices and coupled via their dipolar fields, have been used to address open questions in frustrated magnetism. However, the imaging techniques so far used, are severely constrained in terms of temporal and spatial resolution. Using soft resonant...
Magnetic topological phases of quantum matter are an emerging frontier in physics and material science. Along these lines, several kagome magnets have appeared as the most promising platforms. However, the magnetic nature of these materials in the presence of topological state remains an unsolved issue. Here, we explore magnetic correlations in the kagome magnet Co$_{3}$Sn$_{2}$S$_{2}$. Using...
To address climate change, air pollution and other environmental issues, as well as our critical dependence on fossil fuels, a profound transformation of the energy landscape is required. This transformation has already begun, at least in given countries, with the rapidly increasing share of renewables in electricity production, as well as the growing popularity of electrification in mobility....
Additive Manufacturing is a quickly developing set of technologies that is revolutionising the manufacturing industry worldwide (by, for example, greatly reducing the number, weight and cost of parts of a finished product and by allowing the manufacture of complex shapes), despite a number of still open problems, such as the introduction of residual tensile stress (in particular on the...
The 3D imaging techniques based on hard X-ray radiation like computed tomography (CT) are commonly used to reveal the inner structure of sophisticated materials and complex objects. Although hard X-ray CT was invented more than 45 years ago[1], the use of soft X-rays in 3D imaging is still an exception so far[2], even though soft X-ray radiation involve some advantages in terms of chemical...
Transition metal oxides (TMO) are a class of materials where the charge, orbital, magnetic, and spin degrees of freedom are mutually connected. Interfacing different TMOs offers the possibility to act on each of these degrees of freedom, tailoring new materials with desired properties. In this talk, I will show the effect of the presence of a magnetic proximity layer on the ground state of...
Ferroelectric materials are considered interesting candidates for non-volatile data storage showing below Curie temperature, a macroscopic electric polarization by shifts of oppositely charged ions due to a structural phase transition. Resonant large-amplitude excitation of a polar vibrational mode was recently shown to transiently reverse the ferroelectric polarization of LiNbO3, possibly...
YBCO is a famous and intensively studied compound belonging to the high-temperature cuprate superconductors. It might sound boring to study such an old system. However, there are many important and unsolved problems to be clarified. For example,the electronic interaction bewteen chains and planes is not yet understood as well as the role of chains for superconductivity. One reason, why the...
Strongly correlated oxides can show a variety of exotic physical behaviour such as metal to insulator transitions, multiferroicity, or high-Tc superconductivity. Here we focus on RNiO3 perovskites (R = trivalent rare earth ions), one of the few transition metal oxide families to display spontaneous metal insulator transitions. Interestingly, superconductivity has been recently reported in the...
Understanding the mechanisms behind chemical transformations is key to developing improved catalytic systems. In this context, operando spectroscopy has contributed to advance our molecular view of many reactions at heart of the chemical industry. Here we show the application of complementary spectroscopic techniques to elucidate the mechanism of a reaction that has always occupied a central...
Cobalt-based layered perovskites have emerged as promising electrocatalysts for the oxygen evolution reaction, but important fundamental questions regarding the reaction mechanisms and the design principles for highly active perovskite electrocatalysts are still open. An important development in this sense has recently emerged in a study by Fabbri et al.[1], who demonstrated that oxygen...
As one of the lightest elements, beryllium exhibits high-frequency lattice vibrations, a condition for achieving superconductivity (SC) with a sizeable critical temperature. Yet, paradoxically, its $T_c = 0.026$ K is so low, that its SC is often overlooked. Clearly, $T_c$ is affected also by other factors, notably the electron-phonon coupling strength and the density of states (DOS) at the...
For certain computationally hard problems, quantum computers have a huge speedup advantage compared to their classical counterparts and their successful implementation may lead to drastic advances solid state physics, quantum chemistry and biomedicine, among others.
In this presentation I discuss why rare-earth compounds might be ideal candidates for solid state quantum computation. I...