Manganese based perovskites (“maganites”) of the composition A1-xBxMnO3 appear in various electronic and magnetic phases, with features like colossal magnetoresistance. Those phases are composition and temperature dependent as shown in complex phase diagrams. The complexity of this system originates from competition between order mechanisms, magnetic interactions and structural aspects. The...
MnSc2S4, a magnetically frustrated thiospinel with Mn forming a diamond lattice, shows multistep long-range ordering as a function of applied field, H and temperature, T [1]. We used neutron scattering to map the H(T), T(K) phase boundaries of the triple-k state for the magnetic field applied along (111) and (110) crystallographic directions and Monte Carlo simulations to examine the...
Selective Laser Melting (SLM) is a well-known process category in Additive Manufacturing in which thermal energy selectively fuses regions of a powder bed. To investigate process parameters for metallic materials in-situ with synchroton X-rays, a miniaturized SLM device has been developped at PSI. The design of the miniaturized SLM device is determined by the requirements for X-ray access and...
The quantum magnet BaCuSi2O6, consisting of stacked spin dimer bilayers, undergoes an anomalous dimensional reduction from 3D to 2D close to the quantum critical point [1]. Mechanisms for this dimensional reduction were proposed based on inter-bilayer frustration resulting from an antiferromagnetic intra-bilayer exchange. Ab initio calculations propose a ferromagnetic intra-bilayer exchange...
The search for materials being simultaneously ferroelectric and magnetic, ideally at room temperature, gained interest about a decade ago for its potential applications in energy efficient electronic devices [1]. Materials in which magnetic order induces ferroelectric order, also called multiferroics, are of interest because of their typically strong magnetoelectric coupling [2], such as...
The interface effects in cuprate/manganite multilayers are the subject of many studies, which are focused not only on superconducting properties of antagonistic YBa2Cu3O7(YBCO), but also on its magnetic and electronic properties. In this study we will present our last investigations that proved that in Nd1-x(Ca1-ySry)xMnO3/YBCO/NCSMO (NYN) trilayers, the interfacial electron transfer and the...
Having the advantages of immunity to external magnetic fields and fast spin dynamics, antiferromagnetic materials open a new door towards the next generation of high-speed data storage devices. Here, we optimized the growth condition of epitaxial Mn2Au and NiO films, an antiferromagnetic metal and an insulator film, which can be controlled electrically with two different spin-orbit torque...
For the successful employment of Li-ion batteries at large scale, e.g. for electrical vehicles or stationary energy storage, a crucial point is to increase of energy density in the battery. In order to increase this parameter, anode conversion-alloy materials, such as SnO$_2$ with a specific capacity of ~ 1500 mAh/g, are a serious choice, in particular when mixed with graphite. Despite the...
The search for spin liquid ground states in frustrated magnets has held a considerable place in condensed matter physics over the last decades as it represents a large playground for both theoreticians and experimentalists [1-3].
Quantum Spin Liquids (QSLs) have been and still are of particular interest as they evade long-range magnetic order down to zero temperature, being instead...
The large interest from the scientist community on the magnetoelectric multiferroics comes, mostly, from the technological prospects on those [1,2]. Especially, the type II multiferroics, where the magnetic order drives the electric polarization, being both order parameters strongly correlated. The strong correlation gives the possibility of switching the magnetization by electric field or...
Recent experiments probing the magnetic-field dependence of the resistivity $\rho(H)$ of selected charge-density-wave (CDW) materials including $\text{GdSi}$, $\text{Cr}$, $\text{SrAl}_{4}$, $\text{NbSe}_{3}$ and $(\text{PO}_{2})_{4}\text{(WO}_{3})_{2m}$ etc, revealed a linear-in-H variation of $\rho(H)$ at low fields and at temperatures below the CDW transition [1]. The classical theory of...
Combining magnetic thin films such that two ferromagnetic layers couple antiferromagnetically via a nonmagnetic spacer layer lead to the discovery of new physical properties, such as the giant magnetoresistance effect [1], that are not present in bulk materials. In addition, the magnetization dynamics in these multilayer films are modified by the interlayer coupling [2]. Such systems are...