Speaker
Description
The current best estimate for the universe’s matter content consists of 84% dark matter, and the search for its composition remains of great interest. One possible candidate is a so-far undetected ultra-low-mass axion. Various astronomical observations and laboratory experiments constrain the axion mass and its interaction strength in the allowed phase space. In this talk, we report on a search for dark matter axion-like particles (ALPs) using a Ramsey-type apparatus for cold neutrons. A hypothetical ALP-gluon-coupling would manifest in a neutron electric dipole moment signal oscillating in time. Twenty-four hours of data have been analyzed in a frequency range from 23 $\mu$Hz to 1 kHz, and no significant oscillating signal has been found. The usage of present dark-matter models allows constraining the coupling of ALPs to gluons. Details of the analysis and results will be presented.