Speaker
Description
The ongoing developments in accelerators, detectors and experiment automation is leading to a rapid growth of data generated during experiments. A viable solution is utilizing suitable infrastructures that allow additional remote high performance capacity for processing and analysis of data from the experimental facilities with larger data volumes and higher processing needs.
The SELVEDAS project proposes a hybrid cloud infrastructure, offering scalable and extensible services for data management and analysis to Swiss academic users by leveraging high performance computing (HPC), storage, networking as well as cloud technologies and orchestration. The on-demand services perform as a highly efficient remote data processing system providing fast feedback and analysis with the long time storage and archival of petabytes of data.