We investigated photocleavage of the disulfide bond motif in model compounds such as cysteine dimer (L-cystine) by time-resolved X-ray absorption spectroscopy [1,2]. We follow changes in X-ray absorption at the sulfur K-edge (2.5 keV) that appear to be unique to thyil (R-S∙) radicals, thereby tracking the fate of the disulfide bond. Ultrafast spectroscopy has revealed homolytic S-S bond...
X-ray free-electron lasers (XFELs) enable crystallographic structure determination beyond the limitations imposed upon synchrotron measurements by radiation damage. The need for very short XFEL pulses can be relieved through gating of Bragg diffraction by loss of crystalline order as damage progresses but not if ionization events are spatially non-uniform due to underlying elemental...
There are two types of radiation damage in protein X-ray crystallography [1]. The first one, global damage, has been known since the beginning of X-ray crystallography. Global damage accounts for the decrease in the diffraction properties of a crystal during data collection due to the interaction of X-rays with the atoms of the crystal, which, in particular, generates free electrons and...
X-ray crystallography is the most-prolific technique in structural biology but suffers from radiation damage, which limits the accuracy of the macromolecular structures. The introduction of cryo-cooling techniques greatly reduced the global radiation damage rate and was standardized on all X-ray crystallography beamlines at synchrotrons over the past decades. With the recent advent of serial...
The prospect of single particle imaging with atomic resolution is one of the scientific drivers for the development of X-ray free-electron lasers. The assumption since the beginning has been that damage to the sample caused by intense X-ray pulses is one of the limiting factors for achieving subnanometer X-ray imaging of single particles and that X-ray pulses need to be as short as possible....
Light is important for organisms from all domains of life, serving as an energy resource or carrier of information initiating intra- or intercellular signaling. Photosensitive proteins, endowed with a light-absorbing chromophore, enable this. Obtaining direct structural information to understand the underlying molecular mechanisms is not only important for the fundamental understanding of...
The problem of non-isomorphism has plagued macromolecular crystallography since the beginning [1, 2, 3], and it is essentially unavoidable in radiation damage studies. The unit cell changes with dose and that means the molecules in the cell must be adjusting somehow to the new cell. This will change the structure factors, but what if the molecular distortions could be corrected? Rigid-body...